精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1的极值;

2,当时,在区间内存在极值,求整数的值.

【答案】1极大值,无极小值2.

【解析】

试题分析:1先求定义域,然后求导得,由此求得单调增区间为,递减区间为,在处取得极大值,无极小值2化简,求导得,此时无法判断单调区间,故还要再求一次导数, ,利用的图,判断的图,求得的单调区间,进而求得整数的值.

试题解析:

1,令,解得-2舍去

根据的变化情况列出表格:

由上表可知函数的单调增区间为,递减区间为,在处取得极大值,无极小值.

2

恒成立,

所以为单调递减函数,

.

所以上有零点,且函数上单调性相反,

因此,当时,的区间内存在极值,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】满足{1}X{1234}的集合X有(

A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过点.

(1)若直线与圆相切,求直线的方程;

(2)若直线与圆交于 两点,求使得面积最大的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面是等边三角形,已知

(1)设上的一点,证明:平面平面

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2-6x-8y+21=0和直线kx-y-4k+3=0.

(1)若直线和圆总有两个不同的公共点,求k的取值集合

(2)求当k取何值时,直线被圆截得的弦最短,并求这最短弦的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设点F1(-c,0)、F2(c,0)分别是椭圆C:左、右焦点,P为椭圆C上任意一点,且最小值为0.

求椭圆C的方程;

若动直线l1,l2均与椭圆C相切,且l1l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,请求出B坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次“知识竞赛”活动中,有四道题,其中为难度相同的容易题, 为中档题, 为较难题,现甲、乙两位同学均需从四道题目中随机抽取一题作答.

(1)求甲、乙两位同学所选的题目难度相同的概率;

(2)求甲所选题目的难度大于乙所选题目的难度的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如下(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).

(Ⅰ)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留守儿童有关?

(Ⅱ)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.

参考公式: ; 附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)用定义证明:函数在区间上是减函数;

(2)若函数是偶函数,求实数的值.

查看答案和解析>>

同步练习册答案