精英家教网 > 高中数学 > 题目详情
6.某公司推出一新产品,其成本为500元/件.经试销得知,当销售价为650元/件时一周可卖出350件;当销售价为800元/件时一周可卖出200件,加果销售量y可近似地看成销售价x的一次函数y=kx+b.
(1)求k与b的值;
(2)问销售价定为多少时,此新产品一周获得的利润最大,并求出最大的利润值.

分析 (1)由题意可得x1=650,y1=350;x2=800,y2=200,代入函数y=kx+b,解方程可得k,b;
(2)由(1)可得,y=1000-x,设一周获得的利润为z元,则z=(x-500)y=(x-500)(1000-x),由二次函数的最值的求法,即可得到所求最大值.

解答 解:(1)由题意可得x1=650,y1=350;x2=800,y2=200,
由y=kx+b,可得$\left\{\begin{array}{l}{350=650k+b}\\{200=800k+b}\end{array}\right.$,
解得k=-1,b=1000;
(2)由(1)可得,y=1000-x,
设一周获得的利润为z元,
则z=(x-500)y=(x-500)(1000-x)
=-x2+1500x-500000
=-(x-750)2+62500,
当x=750元/件,z取得最大值.
当销售价定为750元/件时,
此新产品一周获得的利润最大,且为62500元.

点评 本题考查函数的模型的解法,考查二次函数的最值的求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知M(2,0),N(3,-2),点P在直线MN上,且|$\overrightarrow{MP}$|=3|$\overrightarrow{PN}$|,则点P的坐标为($\frac{11}{4}$,-$\frac{3}{2}$)或($\frac{7}{2}$,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=3sin($\frac{π}{3}$-$\frac{x}{2}$)的
(1)单调区间;
(2)最值及取得最值时的x的取值集合;
(3)对称轴,对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,圆内接四边形ABEC的对角线AE与BC交于点D,且∠BAE=∠CAE.证明:
(1)△ABE∽△ADC;
(2)若△ABC的面积为S=$\frac{1}{2}$AD•AE,求∠BAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.现在是11点整,再经过$\frac{120}{11}$分钟,时针和分针第一次垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知抛物线y2=2px(p>0)上一点M(1,m)到其焦点的距离为5,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{25}$=1(a>0)的左顶点为A,若该双曲线的一条渐近线与直线AM垂直,则实数a=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)对任意x∈[0,+∞),都有f(x+1)=-f(x),当x∈[0,1)时,f(x)=x,若函数g(x)=f(x)-${log}_{{a}^{(x+1)}}$(0<a<1)在区间[0,6]上有3个零点,则实数a的取值范围是(  )
A.[$\frac{1}{7}$,$\frac{1}{5}$)B.($\frac{1}{7}$,$\frac{1}{5}$)C.(0,$\frac{1}{7}$)D.($\frac{1}{5}$,1)

查看答案和解析>>

科目:高中数学 来源:2017届广东佛山一中高三上学期月考一数学(理)试卷(解析版) 题型:选择题

若复数满足,则

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北冀州市高二理上月考三数学试卷(解析版) 题型:选择题

将标号为1,2,3,4,5,6的6个小球放入3个不同的盒子中,若每盒放2个,则标号为1,6的小球不在同一个盒子中的概率有( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案