分析 把圆化为普通方程,求出圆心(5$\sqrt{3}$,-5),由$ρ=\sqrt{(5\sqrt{3})^{2}+(-5)^{2}}$=10,cosθ=$\frac{\sqrt{3}}{2}$,(5$\sqrt{3}$,-5)在第四象限,能求出圆ρ=10$\sqrt{3}$cosθ-10sinθ的圆心极坐标.
解答 解:∵圆ρ=10$\sqrt{3}$cosθ-10sinθ,
∴${ρ}^{2}=10\sqrt{3}ρcosθ-10ρsinθ$,
∴${x}^{2}+{y}^{2}=10\sqrt{3}x-10y$,
∴(x-5$\sqrt{3}$)2+(y+5)2=100,
∴圆心(5$\sqrt{3}$,-5),
∴$ρ=\sqrt{(5\sqrt{3})^{2}+(-5)^{2}}$=10,
cosθ=$\frac{5\sqrt{3}}{\sqrt{(5\sqrt{3})^{2}+(-5)^{2}}}$=$\frac{\sqrt{3}}{2}$,(5$\sqrt{3}$,-5)在第四象限,
∴$θ=-\frac{π}{6}$,
∴圆ρ=10$\sqrt{3}$cosθ-10sinθ的圆心极坐标是(10,-$\frac{π}{6}$).
故答案为:(10,-$\frac{π}{6}$).
点评 本题考查圆心的极坐标方程的求法,是基础题,解题时要认真审题,注意极坐标方程与普通方程的互化公式的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{b}$+$\overrightarrow{a}$ | B. | $\overrightarrow{a}$+$\overrightarrow{0}$=$\overrightarrow{a}$ | C. | $\overrightarrow{AC}$+$\overrightarrow{CB}$=$\overrightarrow{AB}$ | D. | |$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$| |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ρ=$\frac{1}{sinθ+cosθ}$ | B. | ρ=$\frac{1}{sinθ-cosθ}$ | C. | θ=$\frac{π}{4}$(ρ∈R) | D. | θ=$\frac{3π}{4}$(ρ∈R) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com