精英家教网 > 高中数学 > 题目详情
19.实数a、b、c满足a2+b2+c2=5.则6ab-8bc+7c2的最大值为45.

分析 将a2+b2+c2分拆为a2+($\frac{1}{9}$+$\frac{8}{9}$)b2+($\frac{2}{9}$+$\frac{7}{9}$)c2 是解决本题的关键,再运用基本不等式a2+b2≥2ab求最值.

解答 解:因为5=a2+b2+c2=a2+($\frac{1}{9}$+$\frac{8}{9}$)b2+($\frac{2}{9}$+$\frac{7}{9}$)c2
=(a2+$\frac{1}{9}$b2)+($\frac{8}{9}$b2+$\frac{2}{9}$c2)+$\frac{7}{9}$c2
≥$\frac{2}{3}$|ab|+$\frac{8}{9}$|bc|+$\frac{7}{9}$c2
≥$\frac{2}{3}$ab-$\frac{8}{9}$bc+$\frac{7}{9}$c2
=$\frac{1}{9}$[6ab-8bc+7c2],
所以,6ab-8bc+7c2≤9×5=45,
即6ab-8bc+7c2的最大值为45,当且仅当:a2=$\frac{1}{9}$b2,$\frac{8}{9}$b2=$\frac{2}{9}$c2
解得,a2=$\frac{5}{46}$,b2=$\frac{45}{46}$,c2=$\frac{180}{46}$,且它们的符号分别为:a>0,b>0,c<0或a<0,b<0,c>0.
故答案为:45.

点评 本题主要考查了基本不等式在求最值问题中的应用,以及基本不等式取等条件的确定,充分考查了等价转化思想与合理分拆的运算技巧,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在△ABC中,A(2,4),B(1,-3),C(-2,1),则边BC上的高AD所在的直线的点斜式方程为y=$\frac{3}{4}$x+$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2016x+log2016x,则函数f(x)的零点的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2x+b,g(x)=x2+bx+c,其中b、c∈R,设$h(x)=\frac{g(x)}{f(x)}$.
(1)如果h(x)为奇函数,求实数b、c满足的条件;
(2)在(1)的条件下,若函数h(x)在区间[2,+∞)上为增函数,求c的取值范围;
(3)若对任意的x∈R恒有f(x)≤g(x)成立.证明:当x≥0时,g(x)≤(x+c)2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=4x+\frac{a}{x}+b$,(a,b∈R)为奇函数.
(1)求b值;
(2)当a=-2时,存在x0∈[1,4]使得不等式f(x0)≤t成立,求实数t的取值范围;
(3)当a≥1时,求证:函数g(x)=f(2x)-c(c∈R)在区间(-∞,-1]上至多有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在单位正方体ABCD-A1B1C1D1中,M、N、P分别是CC1、BC,CD的中点,O为底面ABCD的中心.
(1)求证:A1P⊥MN;
(2)求证:OM⊥平面A1BD;
(3)求证:平面MNP∥平面B1D1A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若圆的方程为x2+2x+y2+4y-4=0,则该圆的圆心坐标为(-1,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点P(2,-1)与点Q关于点O(1,0)对称,则点Q的坐标为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若sinα+sinβ=1-$\frac{\sqrt{3}}{2}$,cosα+cosβ=$\frac{1}{2}$.则cos(α-β)的值为(  )
A.$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.1

查看答案和解析>>

同步练习册答案