【题目】已知矩形为中点,沿直线将翻折成,直线与平面所成角最大时,线段长是( )
A.B.C.D.
【答案】C
【解析】
取的中点,连接交于的中点,,进而有平面,过点作于点,可证平面,连接,设直线与平面所成的角为,平面与平面所成的角为,根据条件可知,平面,,通过边长关系求出,,,以及利用余弦定理求出,从而得出,根据同角三角函数关系和换元法令,得出,再根据基本不等式时得出当时,取得最大值,从而可求出线段长
解:取的中点,连接交于的中点,
在矩形中,为中点,
所以四边形为正方形,,
所以,
故平面,在平面内过点作于点,
则,所以平面,连接,
设直线与平面所成的角为,即
设平面与平面所成的角为,
,所以,
所以,
所以在中,,
则,
在中,,
则由余弦定理得出:,
则有
,
令,则,
即:,
当直线与平面所成角最大时,最大,
即取得最大值时,当且仅当,
此时,
所以,
,
即.
故选:C.
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.对具有线性相关关系的变量有一组观测数据,其线性回归方程是,且,则实数的值是
B.正态分布在区间和上取值的概率相等
C.若两个随机变量的线性相关性越强,则相关系数的值越接近于1
D.若一组数据的平均数是2,则这组数据的众数和中位数都是2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)将的方程化为普通方程,将的方程化为直角坐标方程;
(2)已知直线的参数方程为(,为参数,且),与交于点,与交于点,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面平面,为矩形,为等腰梯形,,分别为,中点,,,.
(1)证明:平面;
(2)求二面角的正弦值;
(3)线段上是否存在点,使得平面,若存在求出的长,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽粒,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为2的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为________;该六面体内有一球,则该球体积的最大值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)若,求的极坐标方程;
(2)若与恰有4个公共点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形是边长为2的正方形.平面,且.
(1)求证:平面平面.
(2)线段上是否存在一点,使三棱锥的高若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com