精英家教网 > 高中数学 > 题目详情
1.各项均为正数的等比数列{an}的前n项和为Sn,若Sn=3,S3n=39,则S4n等于(  )
A.80B.90C.120D.130

分析 由已知可得:公比q≠1,q>0.由于Sn=3,S3n=39,可得$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=3,$\frac{{a}_{1}(1-{q}^{3n})}{1-q}$=39,解得qn=3.$\frac{{a}_{1}}{1-q}$=-$\frac{3}{2}$.即可得出.

解答 解:由已知可得:公比q≠1,q>0.
∵Sn=3,S3n=39,
∴$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=3,$\frac{{a}_{1}(1-{q}^{3n})}{1-q}$=39,
化为q2n+qn-12=0,
解得qn=3.
∴$\frac{{a}_{1}}{1-q}$=-$\frac{3}{2}$.
则S4n=$\frac{{a}_{1}(1-{q}^{4n})}{1-q}$=-$\frac{3}{2}×(1-{3}^{4})$=120.
故选:C.

点评 本题考查了等比数列的通项公式性质及其前n项和公式、一元二次方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,且满足a1=1,2Sn=(n+1)an
(Ⅰ)求{an}的通项公式;
(Ⅱ)设Tn=$\frac{1}{2{a}_{1}}$+$\frac{1}{3{a}_{2}}$+…+$\frac{1}{(n+1){a}_{n}}$,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算:${(\frac{1}{2})^{-1}}-8×{(-2)^{-3}}+{(\frac{1}{4})^0}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下边程序执行后输出的结果是(  )
A.19B.28C.10D.37

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.求直线x-y=2被圆x2+y2=4截得的弦长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{x}{2x+1}$,若数列{an}(n∈N*)满足:a1=1,an+1=f(an
(1)证明数列$\{\frac{1}{a_n}\}$为等差数列,并求数列{an}的通项公式;
(2)设数列{cn}满足:cn=$\frac{3^n}{a_n}$,求数列{cn}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正三棱台ABC-A1B1C1的上、下底面面积分别是$\frac{9}{4}\sqrt{3}$和9$\sqrt{3}$,高是$\frac{3}{2}$.
(1)求三棱台ABC-A1B1C1的斜高;
(2)求三棱台ABC-A1B1C1的侧面积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一个周期的正弦型曲线如图所示,求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=$\frac{1}{2}$,$\frac{3(1+{a}_{n+1})}{1-{a}_{n}}$=$\frac{2(1+{a}_{n})}{1-{a}_{n+1}}$,anan+1<0,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案