(1)因为四棱锥S-ABCD中,ABCD为矩形,SD⊥AD,且SD⊥AB,
所以SD⊥平面ABCD.
BD就是SB在底面ABCD上的射影.
∵AB=2AD,E为CD上一点,且CE=3DE.
∴tan∠DAE=
=
,tan∠DBA=
=
,
∴∠DAE=∠DBA,同理∠BDA=∠AED,
∴∠DAE+∠BDA=90°.
∴AE⊥BD,∴AE⊥SB.∵SB∩BD=B,
∴AE⊥平面SBD.
(2)假设存在MN满足MN⊥CD且MN⊥SB.
建立如图所示的空间直角坐标系,
由题意可知,D(0,0,0),A(a,0,0),C(0,2a,0),B(a,2a,0),S(0,0,
a),
设
=
+t
=(a,2a,0)+t(-a,-2a,
a)=(a-ta,2a-2ta,
ta)(t∈[0,1]),
即M (a-ta,2a-2ta,
ta),N(0,y,0),y∈[0,2a],
=(a-ta,2a-2ta-y,
ta).
使MN⊥CD且MN⊥SB,
则
可得
t=
∈[0,1],y=
a∈[0,2a].
故存在MN使MN⊥CD且MN⊥SB.