精英家教网 > 高中数学 > 题目详情

如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA.

见解析

解析证明 连接OT,因为AT是切线,所以OT⊥AP.
又因为∠PAQ是直角,即AQ⊥AP,
所以AB∥OT,
所以∠TBA=∠BTO.
又OT=OB,所以∠OTB=∠OBT,
所以∠OBT=∠TBA,即BT平分∠OBA.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求圆心在直线上,与轴相切,且被直线截得的弦长为的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C的圆心与点P(-2,1)关于直线y=x+1对称,直线3x+4y-11=0与圆C相交于A、B两点,且=6,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为:,直线的方程为,点在直线上,过点作圆的切线,切点为

(1)若,求点的坐标;
(2)若点的坐标为,过点的直线与圆交于两点,当时,求直线的方程;
(3)求证:经过(其中点为圆的圆心)三点的圆必经过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点Q(-2,)作圆O:x2+y2=r2(r>0)的切线,切点为D,且|QD|=4.
(1)求r的值.
(2)设P是圆O上位于第一象限内的任意一点,过点P作圆O的切线l,且l交x轴于点A,交y轴于点B,设=+,求||的最小值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.

(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线lyxmm∈R.
(1)若以点M(2,0)为圆心的圆与直线l相切于点P,且点Py轴上,求该圆的方程;
(2)若直线l关于x轴对称的直线为l′,问直线l′与抛物线Cx2=4y是否相切?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆
(Ⅰ)若过定点()的直线与圆相切,求直线的方程;
(Ⅱ)若过定点()且倾斜角为的直线与圆相交于两点,求线段的中点的坐标;
(Ⅲ) 问是否存在斜率为的直线,使被圆截得的弦为,且以为直径的圆经过原点?若存在,请写出求直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆.(14分)
(1)此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且(O为坐标原点),求m的值;
(3)在(2)的条件下,求以为直径的圆的方程.

查看答案和解析>>

同步练习册答案