如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA.
科目:高中数学 来源: 题型:解答题
已知圆的方程为:,直线的方程为,点在直线上,过点作圆的切线,切点为.
(1)若,求点的坐标;
(2)若点的坐标为,过点的直线与圆交于两点,当时,求直线的方程;
(3)求证:经过(其中点为圆的圆心)三点的圆必经过定点,并求出所有定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过点Q(-2,)作圆O:x2+y2=r2(r>0)的切线,切点为D,且|QD|=4.
(1)求r的值.
(2)设P是圆O上位于第一象限内的任意一点,过点P作圆O的切线l,且l交x轴于点A,交y轴于点B,设=+,求||的最小值(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l:y=x+m,m∈R.
(1)若以点M(2,0)为圆心的圆与直线l相切于点P,且点P在y轴上,求该圆的方程;
(2)若直线l关于x轴对称的直线为l′,问直线l′与抛物线C:x2=4y是否相切?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆,
(Ⅰ)若过定点()的直线与圆相切,求直线的方程;
(Ⅱ)若过定点()且倾斜角为的直线与圆相交于两点,求线段的中点的坐标;
(Ⅲ) 问是否存在斜率为的直线,使被圆截得的弦为,且以为直径的圆经过原点?若存在,请写出求直线的方程;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆.(14分)
(1)此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且(O为坐标原点),求m的值;
(3)在(2)的条件下,求以为直径的圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com