精英家教网 > 高中数学 > 题目详情
已知直线l:2x+4y+3=0,Pl上的动点,O为坐标原点,点Q分线段OP为1∶2两部分,则点Q的轨迹方程为

A.2x+4y+1=0                                                B.2x+4y+3=0

C.2x+4y+2=0                                                D.x+2y+1=0

解析:设点Q的坐标为(xy),点P的坐标为(x1y1).∵Q分线段OP为1∶2,

∵点P在直线l上,∴2x1+4y1+3=0.把x1=3xy1=3y代入上式并化简,得2x+4y+1=0为所求轨迹方程.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:mx+ny-1=0(m,n∈R*)与x轴相交于点A,与y轴相交于点B,且直线l与圆x2+y2=4相交所得弦长为2.
(Ⅰ)求出m与n的关系式;
(Ⅱ)若直线l与直线2x+y+5=0平行,求直线l的方程;
(Ⅲ)若点P是可行域
2x+y-8≥0
x-y-2≥0
x≤4
内的一个点,是否存在实数m,n使得|OA|+|OB|的最小值为2
6
,且直线l经过点P?若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过直线6x-y+3=0和3x+5y-4=0的交点,且与直线2x+y-5=0垂直,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l与圆C:x2+y2+2x-4y+4=0相切,且原点O到l的距离为1.求此直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有下面四个命题:
①曲线y=-x2+2x+4在点(1,5)处的切线的倾斜角为45°;
②已知直线l,m,平面α,β,若l⊥α,m?β,l⊥m,则α∥β;
③设函数f(x)=Asin(ωx+φ),(A>0,ω>0),若f(1)=0,
则f(x+1)一定是奇函数;
④如果点P到点A(
1
2
,0),B(
1
2
,2)
及直线x=-
1
2
的距离相等,那么满足条件的点P有且只有1个.
其中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山一模)如图,已知直线l过点A(0,4),交函数y=2x的图象于点C,交x轴于点B,若AC:CB=2:3,则点B的横坐标为
3.16
3.16
.(结果精确到0.01,参考数据lg2=0.3010,lg3=0.4771)

查看答案和解析>>

同步练习册答案