精英家教网 > 高中数学 > 题目详情
1.定义在R上的偶函数f(x),当x≥0时,f(x)=x2+log2(x+1),若f(t)≥f(2),则t的取值范围是(  )
A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)

分析 根据函数奇偶性的性质结合函数单调性进行转化求解即可.

解答 解:当x≥0时,f(x)=x2+log2(x+1)为增函数,
∵f(x)是偶函数,
∴不等式f(t)≥f(2),等价为f(|t|)≥f(2),
即|t|≥2,
即t≥或t≤-2,
即t的取值范围是(-∞,-2]∪[2,+∞),
故选:D.

点评 本题主要考查函数奇偶性和单调性的应用,利用奇偶性和单调性的关系将不等式进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=Asin(ωx+φ)(A、ω>0)的图象如图所示,则其解析式可以是(  )
A.$y=sin({x+\frac{π}{6}})$B.$y=sin({x+\frac{π}{3}})$C.$y=sin({2x-\frac{2π}{3}})$D.$y=sin({2x+\frac{π}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列命题
①“等边三角形的三内角均为60°”的逆命题
②若k>0,则方程x2+2x-k=0有实根“的逆命题
③“全等三角形的面积相等”的否命题
④“若ab≠0,则a≠0”的逆否命题,
其中真命题的个数是:2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$\sqrt{(a-b)^{6}}$(a<b)=(b-a)3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C的中心在坐标原点,F(1,0)为椭圆C的一个焦点,点P(2,y0)为椭圆C上一点,且|PF|=1.
(1)求椭圆C的方程;
(2)若过点M(0,1)的直线l与椭圆C交于不同的两点A、B,且$\overrightarrow{AM}$=3$\overrightarrow{MB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.从一批苹果中随机抽取100个作为样本,其重量(单位:克)的频数分布表如下:
分组(重量)[75,85)[85,95)[95,105)[105,115)
频数(个)15303520
(1)在频率分布直方图中,求分组重量在[85,95)对应小矩形的高;
(2)利用频率估计这批苹果重量的平均数.
(3)用分层抽样的方法从重量在[85,95)和[105,115)的苹果中抽取5个,从这5个苹果任取2个,求重量在这两个组中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{lnx,x>1}\\{{x}^{2}-3,x≤1}\end{array}\right.$,若关于x的方程f(x)=$\frac{a}{x}$恰有两个不同解,则实数a的取值范围为[-2,0]∪{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设扇形的半径长为2cm,面积为4cm2,则扇形的圆心角的弧度数是(  )
A.1B.2C.πD.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+xlnx+x.
(1)若a=1,求函数f(x)在(1,f(1))处的切线方程;
(2))若a=-e,证明:方程$|{f(x)}|-lnx=\frac{1}{2}x$无解.

查看答案和解析>>

同步练习册答案