精英家教网 > 高中数学 > 题目详情

【题目】已知函数 为常数). 

(Ⅰ)求函数在点处的切线方程;

(Ⅱ)当函数处取得极值,求函数的解析式;

(Ⅲ)当时,设,若函数在定义域上存在单调减区间,求实数的取值范围.

【答案】(1)(2)(3)

【解析】试题分析:(1)先根据导数几何意义得,再利用点斜式求切线方程,(2)由极值定义得解方程组得 .最后需验证极值条件.(3)由题意得存在使,即存在使,利用变量分离得的最小值,即

试题解析:(Ⅰ)由 (),可得 (),

在点处的切线方程是,即,所求切线方程为

(Ⅱ)∵又可得,且处取得极值

可得解得

所求).

(Ⅲ)∵ ().

依题存在使,∴即存在使

不等式等价于 (*)

),∵

上递减,在上递增,故

∵存在,不等式(*)成立,∴.所求

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于无穷数列和函数,若,则称是数列的母函数.

(Ⅰ)定义在上的函数满足:对任意,都有,且;又数列满足.

(1)求证: 是数列的母函数;

(2)求数列的前项.

(Ⅱ)已知是数列的母函数,且.若数列的前项和为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂2万元设计了某款式的服装,根据经验,每生产1百套该款式服装的成本为1万元,每生产(百套)的销售额(单位:万元).

(1)若生产6百套此款服装,求该厂获得的利润;

(2)该厂至少生产多少套此款式服装才可以不亏本?

(3)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润.(注:利润=销售额-成本,其中成本=设计费+生产成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次综合素质测试中,共设有60个考场,每个考场30名考生,在考试结束后,为调查其测试前的培训辅导情况与测试成绩的相关性,抽取每个考场中座位号为06的考生,统计了他们的成绩,得到如图所示的频率分布直方图.

问:

在这个调查采样中,采用的是什么抽样方法?

估计这次测试中优秀(80分及以上)的人数;

写出这60名考生成绩的众数、中位数、平均数的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】亳州某商场举行购物抽奖活动,规定每位顾客从装有编号为0,1,2,3四个相同小求的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖;等于5中二等奖;等于4或3中三等奖.

(1)求中三等奖的概率;

(2)求不中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足 .

(1)证明:数列是等差数列;

(2)设,数列的前项和为,对任意的 恒成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若在区间上的最大值为,求的值;

(3)若,有不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数函数在点处的切线为

1)求函数的值,并求出上的单调区间;

2)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选拔参加“全市高中数学竞赛”的选手,某中学举行了一次“数学竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(1)求样本容和频率分布直方图中的值并求出抽取学生的平均分;

(2)在选取的样本中,从竞赛成绩在分以上(含)的学生中随机抽取名学生参加“全市中数学竞赛”求所抽取的名学生中至少有一人得分在内的概率.

查看答案和解析>>

同步练习册答案