精英家教网 > 高中数学 > 题目详情
(本小题满分12分).
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
解:(1)由椭圆定义及条件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3.
故椭圆方程为=1.
(2)由点B(4,yB)在椭圆上,得|F2B|=|yB|=.因为椭圆右准线方程为x=,离心率为,根据椭圆定义,有|F2A|=(x1),|F2C|=(x2),
由|F2A|、|F2B|、|F2C|成等差数列,得
(x1)+(x2)=2×,由此得出:x1+x2=8.
设弦AC的中点为P(x0,y0),则x0==4.
(3)解法一:由A(x1,y1),C(x2,y2)在椭圆上.



 
                 

①-②得9(x12x22)+25(y12y22)=0,
即9×=0(x1x2)
 (k≠0)代入上式,得9×4+25y0(-)=0
(k≠0)
k=y0(当k=0时也成立).
由点P(4,y0)在弦AC的垂直平分线上,得y0=4k+m,所以m=y0-4k=y0y0=-y0.
由点P(4,y0)在线段BB′(B′与B关于x轴对称)的内部,得-y0,所以-m.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)若卫星运行轨道椭圆的离心率为,地
心为右焦点
(1)求椭圆方程 ;
(2)若P为椭圆上一动点,求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点分别为,离心率.
(1)求椭圆的方程.
(2)一条不与坐标轴平行的直线与椭圆交于不同的两点,且线段的中点的横坐标为,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知 F1、F2是椭圆的两焦点,是椭圆在第一象限弧上一点,且满足=1.过点P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求证直线AB的斜率为定值;
(3)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
椭圆过点,其左、右焦点分别为,离心率是直线上的两个动点,且
(1)求椭圆的方程; (2)求的最小值;
(3)以为直径的圆是否过定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求过点,且与椭圆有相同焦点的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,椭圆)被围于由条直线所围成的矩形内,任取椭圆上一点,若),则满足的一个等式是_______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

焦点分别为(0,)和(0,-)的椭圆截直线y=3x-2所得椭圆的弦的中点的横坐标为,求此椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C: (a>b>0)的离心率为,短轴一个端点到右焦点的距离为
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.

查看答案和解析>>

同步练习册答案