精英家教网 > 高中数学 > 题目详情

【题目】如图,四面体中,平面

(Ⅰ)证明:平面

(Ⅱ)在线段上是否存在点,使得,若存在,求的值,若不存在,请说明理由.

【答案】(Ⅰ)详见解析;(Ⅱ)在线段上存在点,当时,使得

【解析】

(Ⅰ)由勾股定理得,又平面,可证,利用线面垂直的判定定理即可得到证明;(Ⅱ)在平面内,过点,垂足为,在平面内,过点,交于点,连结,利用线面垂直的判断定理可证平面,利用线面垂直的性质可证,在中,解三角形即可得解的值.

(Ⅰ)由题知:

,所以

又因为平面,所以

因为

所以平面

(Ⅱ)在线段上存在点,当时,使得

理由如下:

在平面内,过点,垂足为

在平面内,过点,交于点,连结

平面,知

所以,所以平面

又因为平面,所以

中,

所以

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

(1)写出图(1)表示的市场售价与时间的函数关系式写出图(2)表示的种植成本与时间的函数关系式

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北. 湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记.由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验.在某普查小区,共有 50 家企事业单位,150 家个体经营户,普查情况如下表所示:

普查对象类别

顺利

不顺利

合计

企事业单位

40

50

个体经营户

50

150

合计

1)写出选择 5 个国家综合试点地区采用的抽样方法;

2)补全上述列联表(在答题卡填写),并根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;

3)根据该试点普查小区的情况,为保障第四次经济普查的顺利进行,请你从统计的角度提出一条建议.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某电子元件进行寿命追踪调查,情况如下:

寿命分组/h

100~200

200~300

300~400

400~500

500~600

个数

20

30

80

40

30

1)求下表中的xy

寿命分组/h

频数

频率

100~200

20

0.10

200~300

30

x

300~400

80

0.40

400~500

40

0.20

500~600

30

y

合计

200

1

2)从频率分布直方图估计电子元件寿命的第80百分位数是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是R上的偶函数,对于都有成立,且,当,且时,都有.则给出下列命题:

函数图象的一条对称轴为

函数在[﹣9,﹣6]上为减函数;方程在[﹣9,9]上有4个根;

其中正确的命题序号是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调增区间;最大值,以及取得最大值时x的取值集合;

(2)已知中,角ABC的对边分别为abc,若,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.

1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;

2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在150名和9511000名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?

3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在150的学生人数为,求的分布列和数学期望.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,下列结论中错误的是( )

A. 既是偶函数又是周期函数 B. 的最大值是1

C. 的图像关于点对称 D. 的图像关于直线对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为),则出厂价相应地提高比例为,同时预计年销售量增加的比例为,已知年利润=(出厂价-投入成本)×年销售量.

1)写出本年度预计的年利润与投入成本增加的比例的关系式;

2)为使本年度的年利润比上年度有所增加,则投入成本增加的比应在什么范围内?

查看答案和解析>>

同步练习册答案