【题目】如图,点为正方形边上异于点,的动点,将沿翻折成,在翻折过程中,下列说法正确的是( )
A.存在点和某一翻折位置,使得
B.存在点和某一翻折位置,使得平面
C.存在点和某一翻折位置,使得直线与平面所成的角为45°
D.存在点和某一翻折位置,使得二面角的大小为60°
科目:高中数学 来源: 题型:
【题目】已知曲线:与曲线:交于,两点,且的周长为.
(Ⅰ)求曲线的方程.
(Ⅱ)设过曲线焦点的直线与曲线交于,两点,记直线,的斜率分别为,.求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国唐代天文学家、数学家张逐曾以“李白喝酒”为题编写了如下一道题:“李白街上走,提壶去买酒,遇店加一倍,见花喝一斗(计量单位),三遇店和花,喝光壶中酒.”问最后一次遇花时有酒________斗,原有酒________斗.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第30届夏季奥运会将于2012年7月27日在伦敦举行,当地某学校招募了8名男志愿者和12名女志愿者.将这20名志愿者的身高编成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.
(I)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点为正方形边上异于点,的动点,将沿翻折成,在翻折过程中,下列说法正确的是( )
A.存在点和某一翻折位置,使得
B.存在点和某一翻折位置,使得平面
C.存在点和某一翻折位置,使得直线与平面所成的角为45°
D.存在点和某一翻折位置,使得二面角的大小为60°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,过抛物线的焦点且与轴垂直的直线与抛物线在第一象限交于点,的面积为,其中为坐标原点.
(1)求抛物线的标准方程;
(2)若,,为抛物线上的两个不同的点,直线,的斜率分别为,,且,求点到直线的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知项数为的数列满足如下条件:①;②若数列满足其中则称为的“伴随数列”.
(I)数列是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;
(II)若为的“伴随数列”,证明:;
(III)已知数列存在“伴随数列”且求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com