精英家教网 > 高中数学 > 题目详情

【题目】如图,点为正方形上异于点的动点,将沿翻折成,在翻折过程中,下列说法正确的是(

A.存在点和某一翻折位置,使得

B.存在点和某一翻折位置,使得平面

C.存在点和某一翻折位置,使得直线与平面所成的角为45°

D.存在点和某一翻折位置,使得二面角的大小为60°

【答案】ACD

【解析】

依次判断每个选项:当时,正确,平面,则,这与已知矛盾,故错误,取二面角的平面角为,取,计算得到正确,取二面角的平面角为,计算得到,故正确,得到答案.

时,,故平面,故正确;

平面,因平面,平面平面,则

这与已知矛盾,故错误;

如图所示:,交在平面的投影上,

连接,故为直线与平面所成的角,

取二面角的平面角为,取,故

,故只需满足

中,根据余弦定理:

,解得,故正确;

,则为二面角的平面角,

取二面角的平面角为,故只需满足

,则

,化简得到,解得,验证满足,故正确;

故选:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线与曲线交于两点,且的周长为

(Ⅰ)求曲线的方程.

(Ⅱ)设过曲线焦点的直线与曲线交于两点,记直线的斜率分别为.求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国唐代天文学家、数学家张逐曾以李白喝酒为题编写了如下一道题:李白街上走,提壶去买酒,遇店加一倍,见花喝一斗(计量单位),三遇店和花,喝光壶中酒.问最后一次遇花时有酒________斗,原有酒________斗.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于两点,且(其中为坐标原点),若椭圆的离心率满足,则椭圆长轴的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】30届夏季奥运会将于2012727日在伦敦举行,当地某学校招募了8名男志愿者和12名女志愿者.将这20名志愿者的身高编成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为高个子,身高在180cm以下(不包括180cm)定义为非高个子”,且只有女高个子才能担任礼仪小姐

I)如果用分层抽样的方法从高个子非高个子中抽取5人,再从这5人中选2人,那么至少有一人是高个子的概率是多少?

)若从所有高个子中选3名志愿者,用X表示所选志愿者中能担任礼仪小姐的人数,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点为正方形上异于点的动点,将沿翻折成,在翻折过程中,下列说法正确的是(

A.存在点和某一翻折位置,使得

B.存在点和某一翻折位置,使得平面

C.存在点和某一翻折位置,使得直线与平面所成的角为45°

D.存在点和某一翻折位置,使得二面角的大小为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过抛物线的焦点且与轴垂直的直线与抛物线在第一象限交于点的面积为,其中为坐标原点.

1)求抛物线的标准方程;

2)若为抛物线上的两个不同的点,直线的斜率分别为,且,求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论上的单调性;

2)当时,若存在正实数,使得对,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知项数为的数列满足如下条件:①;②若数列满足其中则称的“伴随数列”.

I)数列是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;

II)若的“伴随数列”,证明:

III)已知数列存在“伴随数列”的最大值.

查看答案和解析>>

同步练习册答案