精英家教网 > 高中数学 > 题目详情
已知函数,g(x)=ax2+2(a+2d)x+a+4d,其中a>0,d>0,设x为f(x)的极小值点,x1为g(x)的极值点,g(x2)=g(x3)=0,并且x2<x3,将点(x,f(x)),(x1,g(x1),(x2,0)(x3,0)依次记为A,B,C,D.
(1)求x的值;
(2)若四边形APCD为梯形且面积为1,求a,d的值.
【答案】分析:(1)先对函数f(x)进行求导,讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极小值,求出x的值;
(2)讨论满足g′(x)=0的点附近的导数的符号的变化情况,来确定极小值,求出x1的值,再根据x2,x3是g(x)=0的两个根求出x2,x3,然后分别求出A,B,C,D四个点的坐标,由四边形ABCD是梯形及BC与AD不平行,得AB∥CD,以及四边形APCD为梯形且面积为1建立两个等量关系即可求得a,d的值.
解答:解:(1)f′(x)=ax2+2(a+d)x+a+2d=(x+1)(ax+a+2d),
令f′(x)=0,
由a≠0得x=-1或
∵a>0,d>0.

时,f′(x)<0,
当x>-1时f′(x)>0,
所以f(x)在x=-1处取极小值,即x=-1
(2)解:g(x)=ax2+(2a+4d)x+a+4d
∵a>0,x∈R
∴g(x)在处取得极小值,即
由g(x)=0,即(ax+a+4d)(x+1)=0
∵a>0,d>0,x2<x3



,D(-1,0)
由四边形ABCD是梯形及BC与AD不平行,得AB∥CD.
即a2=12d2
由四边形ABCD的面积为1,得
得d=1,
从而a2=12得a=,d=1
点评:本小题考查多项式函数的导数,函数极值的判定,二次函数与二次方程等基础知识的综合运用,考查用数形结合的数学思想分析问题,解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=g(x)与f(x)=loga(x+1)(a>1)的图象关于原点对称.
(1)写出y=g(x)的解析式;
(2)若函数F(x)=f(x)+g(x)+m为奇函数,试确定实数m的值;
(3)当x∈[0,1)时,总有f(x)+g(x)≥n成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=G(x)的图象过原点,其导函数为y=f(x),函数f(x)=3x2+2bx+c且满足f(1-x)=f(1+x).
(1)若f(x)≥0,对x∈[0,3]恒成立,求实数c的最小值.(2)设G(x)在x=t处取得极大值,记此极大值为g(t),求g(t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=g(x)的图象与函数f(x)=(x-1)2(x≤0)的图象关于直线y=x对称,则函数g(x)的解析式为g(x)=
-
x
+1
(x≥1)
-
x
+1
(x≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=g(x)是定义在R上的奇函数,当x>0时,g(x)=log2x,函数f(x)=4-x2,则函数f(x)•g(x)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)+2f(
1x
)=3x,求f(x)的解析式;
(2)已知函数y=g(x)定义域是[-2,3],求y=g(x+1)的定义域.

查看答案和解析>>

同步练习册答案