精英家教网 > 高中数学 > 题目详情

【题目】下列命题:①在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率, 越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;④对分类变量,它们的随机变量的观测值来说, 越小,“有关系”的把握程度越大.其中正确命题的个数是

A. 1个 B. 2个 C. 3个 D. 4个

【答案】C

【解析】对于①,在回归分析模型中,相关指数表示解释变量对于预报变量的贡献率, 越接近于1,表示回归效果越好,正确,因为相关指数越大,则残差平方和越小,模型的拟合效果越好,①正确.

对于②两个变量相关性越强,则相关系数的绝对值就越接近于1;

对于③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;正确;

对于④对分类变量,它们的随机变量的观测值来说, 越小,“有关系”的把握程度越大.错误,因为在对分类变量进行独立性检验时,随机变量的观测值越大,则“相关”可信程度越大,故④错误;

故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)exax1.

1)求f(x)的单调增区间;

2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形的边长为2, . 是边上一点,线段于点.

(1)若的面积为,求的长;

(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形和矩形所在平面互相垂直

(1)求二面角的大小;

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为正方形,且底面的平面与侧面的交线为且满足表示的面积.

(1)证明: 平面

(2)当时,二面角的余弦值为的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图,在四棱锥PABCD中,侧面PAD底面ABCD,侧棱PAPD=,底面ABCD为直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2OAD中点.

(Ⅰ)求证:PO平面ABCD

(Ⅱ)求异面直线PBCD所成角的余弦值;

(Ⅲ)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为矩形的四棱锥中, .

(1)证明:平面平面

(2)若异面直线所成角为 ,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,短轴长为,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点轴不垂直的直线交椭圆于 两点.

Ⅰ)求椭圆的方程.

Ⅱ)当直线的斜率为时,求的面积.

Ⅲ)在线段上是否存在点,使得经 为领边的平行四边形是菱形?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为的奇函数.

(1)确定的值;

(2)若,函数,求的最小值;

(3)若,是否存在正整数,使得恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案