精英家教网 > 高中数学 > 题目详情
10.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1,F2,一条直线l经过点F1与椭圆交于A,B两点.
(1)求△ABF2的周长;
(2)若l的倾斜角为$\frac{π}{4}$,求弦长|AB|.

分析 (1)由椭圆的定义可知:△ABF2的周长=丨AB丨+丨AF2丨+丨BF2丨=4a=8,则△ABF2的周长8;
(2)由(1)可知:直线AB的方程为y=x+1,代入椭圆方程,由韦达定理及弦长公式即可求得弦长|AB|.

解答 解 (1)椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,a=2,b=$\sqrt{3}$,c=1,
由椭圆的定义,得丨AF1丨+丨AF2丨=2a=4,丨BF1丨+丨BF2丨=2a=4,
又丨AF1丨+丨BF1丨=丨AB丨,
∴△ABF2的周长=丨AB丨+丨AF2丨+丨BF2丨=4a=8.
∴故△ABF2点周长为8;
(2)由(1)可知,得F1(-1,0),
∵AB的倾斜角为$\frac{π}{4}$,则AB斜率为1,A(x1,y1),B(x2,y2),
故直线AB的方程为y=x+1.$\left\{\begin{array}{l}{y=x+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:7y2-6y-9=0,
由韦达定理可知:y1+y2=$\frac{6}{7}$,y1•y2=-$\frac{9}{7}$,
则由弦长公式丨AB丨=$\sqrt{1+\frac{1}{{k}^{2}}}$•$\sqrt{({y}_{1}+{y}_{2})-4{y}_{1}{y}_{2}}$=$\sqrt{1+1}$•$\sqrt{(\frac{6}{7})^{2}-4×(-\frac{9}{7})}$=$\frac{24}{7}$,
弦长|AB|=$\frac{24}{7}$.

点评 本题考查椭圆的定义,直线与椭圆的位置关系,考查韦达定理,弦长公式,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设a=log43,b=log34,c=log53,则(  )
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为63,98,则输出的a=(  )
A.9B.3C.7D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一束光线l自A(-3,3)发出,射到x轴上的点M后,被x轴反射到⊙C:x2+y2-4x-4y+7=0上.
(1)求反射线通过圆心C时,光线l的方程;
(2)求满足条件的入射点M的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R,则函数f(x)的单调递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x|x2-5x+4<0},B={x||x-a|<1},则“a∈(2,3)”是“B⊆A”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知不等式|2x-1|-|x+1|<2的解集为{x|a<x<b}.
(1)求a,b的值;
(2)已知x>y>z,求证:存在实数k,使$-\frac{3a}{{2({x-y})}}+\frac{b}{{4({y-z})}}≥\frac{k}{x-z}$恒成立,并求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=|x2-1|,要使直线y=a与该函数图象有四个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知{an}为等比数列,Sn是它的前n项和.若${a_3}{a_5}=\frac{1}{4}{a_1}$,且a4与a7的等差中项为$\frac{9}{8}$,则S5为31.

查看答案和解析>>

同步练习册答案