【题目】如图,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
【答案】(1)详见解析(2)详见解析(3)线段A1B上存在点Q,使得A1C⊥平面DEQ
【解析】
试题分析:(1)D,E分别为AC,AB的中点,易证DE∥平面A1CB;(2)由题意可证DE⊥平面A1DC,从而有DE⊥A1F,又A1F⊥CD,可证A1F⊥平面BCDE,问题解决;(3)取A1C,A1B的中点P,Q,则PQ∥BC,平面DEQ即为平面DEP,由DE⊥平面,P是等腰三角形DA1C底边A1C的中点,可证A1C⊥平面DEP,从而A1C⊥平面DEQ
试题解析:(1)证明:因为D,E分别为AC,AB的中点,
所以DE∥BC.
又因为DE平面A1CB,
所以DE∥平面A1CB.
(2)证明:由已知得AC⊥BC且DE∥BC,
所以DE⊥AC.
所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.
而A1F平面A1DC,所以DE⊥A1F.
又因为A1F⊥CD,
所以A1F⊥平面BCDE.所以A1F⊥BE.
(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:
如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.
又因为DE∥BC,所以DE∥PQ.
所以平面DEQ即为平面DEP.
由(2)知,DE⊥平面A1DC,所以DE⊥A1C.
又因为P是等腰三角形DA1C底边A1C的中点,
所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.
故线段A1B上存在点Q,使得A1C⊥平面DEQ.
科目:高中数学 来源: 题型:
【题目】如下图,已知四棱锥中,底面为菱形,平面,,,分别是,的中点.
(I)证明:平面;
(II)取,在线段上是否存在点,使得与平面所成最大角的正切值为,若存在,请求出点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某飞机失联,经卫星侦查,其最后出现在小岛附近,现派出四艘搜救船,为方便联络,船始终在以小岛为圆心,100海里为半径的圆上,船构成正方形编队展开搜索,小岛在正方形编队外(如图).设小岛到的距离为,,船到小岛的距离为.
(1)请分别求关于的函数关系式,并分别写出定义域;
(2)当两艘船之间的距离是多少时搜救范围最大(即最大)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(1)当时,证明:函数不是奇函数;
(2)判断函数的单调性,并利用函数单调性的定义给出证明;
(3)若是奇函数,且在时恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,、是两条公路(近似看成两条直线),,在内有一纪念塔(大小忽略不计),已知到直线、的距离分别为、,=6千米,=12千米.现经过纪念塔修建一条直线型小路,与两条公路、分别交于点、.
(1)求纪念塔到两条公路交点处的距离;
(2)若纪念塔为小路的中点,求小路的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点,过点的直线交抛物线于两点.
(Ⅰ)若点满足,求直线的方程;
(Ⅱ)为直线上任意一点,过点作的垂线交椭圆于两点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(I)求直方图中的值;
(II)求月平均用电量的众数和中位数;
(III)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com