精英家教网 > 高中数学 > 题目详情

【题目】如图,在RtABC中,C90°DE分别为ACAB的中点,点F为线段CD上的一点.将ADE沿DE折起到A1DE的位置,使A1FCD,如图2.

1求证:DE平面A1CB

2求证:A1FBE

3线段A1B上是否存在点Q,使A1C平面DEQ?说明理由.

【答案】1详见解析2详见解析3线段A1B上存在点Q,使得A1C平面DEQ

【解析】

试题分析:1D,E分别为AC,AB的中点,易证DE平面A1CB;2由题意可证DE平面A1DC,从而有DEA1F,又A1FCD,可证A1F平面BCDE,问题解决;3取A1C,A1B的中点P,Q,则PQBC,平面DEQ即为平面DEP,由DE平面,P是等腰三角形DA1C底边A1C的中点,可证A1C平面DEP,从而A1C平面DEQ

试题解析:1证明:因为DE分别为ACAB的中点,

所以DEBC.

又因为DE平面A1CB

所以DE平面A1CB.

2证明:由已知得ACBCDEBC

所以DEAC.

所以DEA1DDECD.所以DE平面A1DC.

A1F平面A1DC,所以DEA1F.

又因为A1FCD

所以A1F平面BCDE.所以A1FBE.

3线段A1B上存在点Q,使A1C平面DEQ.理由如下:

如图,分别取A1CA1B的中点PQ,则PQBC.

又因为DEBC,所以DEPQ.

所以平面DEQ即为平面DEP.

2知,DE平面A1DC,所以DEA1C.

又因为P是等腰三角形DA1C底边A1C的中点,

所以A1CDP.所以A1C平面DEP.从而A1C平面DEQ.

故线段A1B上存在点Q,使得A1C平面DEQ.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足:

(1)设,求数列的通项公式;

(2)设,不等式恒成立时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图,已知四棱锥中,底面为菱形,平面分别是的中点.

I)证明:平面

II)取,在线段上是否存在点,使得与平面所成最大角的正切值为,若存在,请求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某飞机失联,经卫星侦查,其最后出现在小岛附近,现派出四艘搜救船,为方便联络,船始终在以小岛为圆心,100海里为半径的圆上,船构成正方形编队展开搜索,小岛在正方形编队外(如图).设小岛的距离为船到小岛的距离为.

(1)请分别求关于的函数关系式,并分别写出定义域;

(2)当两艘船之间的距离是多少时搜救范围最大(即最大)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,证明:函数不是奇函数;

2)判断函数的单调性,并利用函数单调性的定义给出证明;

3)若是奇函数,且时恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是两条公路(近似看成两条直线),,在内有一纪念塔(大小忽略不计),已知到直线的距离分别为=6千米,=12千米.现经过纪念塔修建一条直线型小路,与两条公路分别交于点

(1)求纪念塔到两条公路交点处的距离;

(2)若纪念塔为小路的中点,求小路的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点,过点的直线交抛物线两点.

(Ⅰ)若点满足,求直线的方程;

(Ⅱ)为直线上任意一点,过点的垂线交椭圆两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,解不等式

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

(I)求直方图中的值;

(II)求月平均用电量的众数和中位数;

(III)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

同步练习册答案