精英家教网 > 高中数学 > 题目详情
13.在△ABC中,内角A,B,C的对边分别为a,b,c,有以下四个命题:
(1)若A-C=90°,a+c=$\sqrt{2}$b,则C=$\frac{π}{12}$;
(2)若$\frac{a}{cosA}$=$\frac{b}{cosB}$=$\frac{c}{cosC}$,则△ABC不一定为正三角形;
(3)若A=80°,a2=b(b+c),则C=60°或50°;
(4)若A-B=90°,则$\frac{2}{{c}^{2}}$=$\frac{1}{(a+b)^{2}}$+$\frac{1}{(a-b)^{2}}$.
其中正确命题的个数为(1)(4).

分析 对四个选项,分别进行判断,即可得出结论.

解答 解:(1)∵a+c=$\sqrt{2}$b,∴sinA+sinC=$\sqrt{2}$sinB,∵A-C=90°,∴A=C+90°,
∴sin(C+90°)+sinC=$\sqrt{2}$sin(90°-2C),
∴cosC+sinC=$\sqrt{2}$sin(90°-2C),
∴$\sqrt{2}$sin(C+45°)=$\sqrt{2}$sin(90°-2C),
∴C+45°=90°-2C,或C+45°+90°-2C=180°,
∴C=15°或C=-45°(舍),故正确;
(2)$\frac{a}{cosA}$=$\frac{b}{cosB}$=$\frac{c}{cosC}$,∴$\frac{sinA}{cosA}$=$\frac{sinB}{cosB}$=$\frac{sinC}{cosC}$,∴A=B=C,∴△ABC为正三角形,故不正确;
(3)∵a2=b(b+c),∴a2=b2+bc,而a=2RsinA,b=2RsinB,c=2RsinC,
∴sin2A=sin2B+sinBsinC,
整理得sin(A+B)sin(A-B)=sinBsinC,而A+B+C=180°,A+B=180°-C,sin(A+B)=sinC,
∴sin(A-B)=sinB,∴A-B=B,∴A=2B,
∵A=80°∴B=40°∴C=180°-80°-40°=60°,故不正确;
(4)sinA+sinB=2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$=$\sqrt{2}$sin$\frac{A+B}{2}$,sinA-sinB=2cos$\frac{A+B}{2}$sin$\frac{A-B}{2}$=$\sqrt{2}$cos$\frac{A+B}{2}$
$\frac{1}{(a+b)^{2}}$+$\frac{1}{(a-b)^{2}}$=$\frac{2}{4{R}^{2}si{n}^{2}(A+B)}$=$\frac{2}{{c}^{2}}$,∴$\frac{2}{{c}^{2}}$=$\frac{1}{(a+b)^{2}}$+$\frac{1}{(a-b)^{2}}$,正确,
故答案为:(1)(4)

点评 本题考查正弦定理,考查三角函数知识,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某公司销售一种产品,给业务员返还提成的方案有三种:第一种,每销售一件该产品提成40元;第二种,采用累进制,即销售第一件产品提成为4元,以后每销售一件产品都比前一件多提成4元;第三种,销售第一件产品提成为0.5元,以后每销售一件产品都比前一件产品的提成翻一番(即是前一件提成的2倍),公司规定,业务员可在这三种方案中任选一种,且只能选一种.
(1)设销售该产品n件,按照三种提成方案获得的提成额分别为An、Bn、Cn,试求出An、Bn、Cn的表达式
(2)如果你是该公司的一名业务员,为使自己的利益最大化,你应如何选择销售提成方案?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,过点P作⊙O的切线PA,A为切点,过PA中点B作割线交⊙O于C、D,连结PC并延长⊙O于E,连结PD,交⊙O于F,求证:EF∥PA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一个高为3且其底面是有一个内角为60°的菱形的直四棱柱直立在水平桌面上,若该直四棱柱的正视图的最小面积为$\frac{9}{4}$,则直四棱柱的体积为(  )
A.$\frac{3\sqrt{3}}{8}$B.$\frac{9\sqrt{3}}{16}$C.$\frac{9\sqrt{3}}{8}$D.$\frac{9\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=ax2+bx+c经过坐标原点,当x=$\frac{1}{3}$时有最小值-$\frac{1}{3}$,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求函数f(x)的解析式;
(2)求数列{an}的通项公式;
(3)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Tn是数列{bn}的前n项和,求使得Tn<$\frac{m}{20}$对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.4名旅投宿3个客店,不同的投宿方式的种数是(  )
A.${C}_{4}^{3}$B.${P}_{4}^{3}$C.${4}_{\;}^{3}$D.34

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.掷三颗骰子,求所得点数的最大值为最小值2倍的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sinx+x3.数列{an}的前n项和为Sn=pn2+qn,p,q为常数,且an∈(-$\frac{π}{2}$,$\frac{π}{2}$),若f(a10)<0,则f(a1)+f(a2)+…+f(a18)+f(a19)取值(  )
A.恒为正数B.恒为负数C.恒为零D.可正可负

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,一个铸铁零件,是由半个圆柱与一个正四棱柱组合成的几何体,圆柱的底面直与高均为2厘米,正四棱柱底面边长为2厘米、侧棱为3厘米,求该零件的质量(铁的密度约为7.4克厘米3)(精确到0.1克).

查看答案和解析>>

同步练习册答案