精英家教网 > 高中数学 > 题目详情
设两个非零向量
e1
e2
不共线.
(1)如果
AB
=
e1
+
e2
BC
=2
e1
+8
e2
CD
=3
e1
-3
e2
,求证:A、B、D三点共线;
(2)若|
e1
|
=2,|
e2
|
=3,
e1
e2
的夹角为60°,是否存在实数m,使得m
e1
+
e2
e1
-
e2
垂直?
分析:(1)要证A、B、D三点共线,只需证明
AD
=λ
AB
即可.
(2)要使m
e1
+
e2
e1
-
e2
垂直,,则(m
e1
+
e2
)•(
e1
-
e2
)=0,展开求出m的值即可.
解答:证明:(1)∵
AD
=
AB
+
BC
+
CD
=(
e1
+
e2
)+(2
e1
+8
e2
)+(3
e1
-3
e2
)=6(
e1
+
e2
)=6
AB

AD
AB
AD
AB
有共同起点,∴A、B、D三点共线

(2)假设存在实数m,使得m
e1
+
e2
e1
-
e2
垂直,则(m
e1
+
e2
)•(
e1
-
e2
)=0
m
e1
2
+(1-m)
e1
e2
-
e2
2
=0

|
e1
|
=2,|
e2
|
=3,
e1
e2
的夹角为60°
e1
2
=|
e1
|2=4
e2
2
=|
e2
|2=9
e1
e2
=|
e1
||
e2
|cosθ=2×3×cos60°=3

∴4m+3(1-m)-9=0,
∴m=6,故存在实数m=6,使得m
e1
+
e2
e1
-
e2
垂直.
点评:本题考查了平面向量的共线与垂直,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设两个非零向量e1和e2不共线.
(1)如果
AB
=
e1
-
e2
BC
=3
e1
+2
e2
CD
=-8
e1
-2
e2
,求证:A、C、D三点共线;
(2)如果
AB
=
e1
+
e2
BC
=
2e1
-
3e2
CD
=2
e1
-k
e2
,且A、C、D三点共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:
sin(
π
2
+α)•cos(
π
2
-α)
cos(π-α)
+
sin(π-α)•sin(-α)
sin(π+α)

(2)设两个非零向量
e1
e2
不共线,且
AB
=
e1
+2
e2
BC
=-2
e1
+3
e2
CD
=5
e1
+3
e2
,求证:A,B,D三点在同一直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61
,求
a
b
的值;
(2)设两个非零向量
e1
e2
不共线.如果
AB
=
e1
+
e2
BC
=2
e1
+8
e2
CD
=3
e1
-3
e2

求证:A、B、D三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

设两个非零向量e1和e2不共线.

(1)如果=e1-e2=3e1+2e2=-8e1-2e2

求证:A、C、D三点共线;

(2)如果=e1+e2=2e1-3e2=2e1-ke2,且A、C、D三点共线,求k的值.

查看答案和解析>>

同步练习册答案