精英家教网 > 高中数学 > 题目详情
如果x2+y2=1,求3x-4y的最大值.
考点:直线与圆的位置关系
专题:直线与圆
分析:设3x-4y=b,利用直线和圆的位置关系即可得到结论.
解答: 解:设3x-4y=b,即3x-4y-b=0,
则圆心到直线的距离d=
|-b|
32+42
=
|b|
5
≤1

即|b|≤5,
解得-5≤b≤5,
故3x-4y的最大值5.
点评:本题主要考查直线和圆的位置关系的应用,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

方程3x2+6x-
1
x
=0的实数根个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

y=x|x|+3的单调增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(ax2+2x+3)
(1)若f(1)=1,求f(x)的单调区间;
(2)若已知函数的值域为R,求a的取值范围;
(3)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在河岸 ac一侧测量河的宽度,测量以下四组数据,较适宜的是(  ) 
A、c,α,γ
B、c,b,α
C、c,a,β
D、b,α,γ

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2x-
2
x
+a的一个零点在(1,4)内,则实数a的取值范围为(  )
A、(-
3
2
,2)
B、(4,6)
C、(2,4)
D、(-3,-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(0,1),C(2,3),动点P满足|
PC
|=1,过点M且斜率为k的直线l与动点P的轨迹相交于A、B两点.
(1)求动点P的轨迹方程;
(2)求实数k的取值范围;
(3)求证:
MA
MB
为定值;
(4)若O为坐标原点,且
OA
OB
=12,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Г的方程为
x2
a2
+
y2
b2
=1(a>b>0)点A,B分别为Г上的两个动点,O为坐标原点,且OA⊥OB;其中OA,OB称为椭圆的一条半径.
(1)求证:
1
|OA|2
+
1
|OB|2
=
1
a2
+
1
b2
;|OA|2+|OB|2的最小值为
4a2b2
a2+b2

(2)过点O作OH⊥AB于H,求证:|OH|=
ab
a2+b2
;S△OAB的最小值是
a2b2
a2+b2

(3)将(1)(2)的结论推广至双曲线,结论是否依然成立,若成立,证明你的结论;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知函数y=log24x图象上的两点A,B和函数y=log2x上的点 C,线段AC平行于y轴,三角形ABC为正三角形时,点B的坐标为(p,q),则实数p的值为
 

查看答案和解析>>

同步练习册答案