精英家教网 > 高中数学 > 题目详情

【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( )

A. B. C. D.

【答案】D

【解析】

甲、乙二人抢到的金额之和包含的基本事件的总数,甲、乙二人抢到的金额之和不低于3元包含基本事件有6个,由此能求出甲、乙二人抢到的金额之和不低于3元的概率.

由题意,所发红包的总金额为8元,被随机分配为1.72元、1.83元、2.28元、1.55元、0.62元、5分,供甲、乙等5人抢,每人只能抢一次,

甲乙二人抢到的金额之和包含的基本事件的总数为

甲乙二人抢到的金额之和不低于3元包含的基本事件有6个,分别为

所以甲乙二人抢到的金额之和不低于3元的概率为,故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

①当时,有

②若是锐角三角形,则

③已知是等差数列的前项和,若,则

④函数的图像关于直线对称;

⑤当时,不等式恒成立,则实数的取值范围为.

其中正确命题的序号为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1:y2=2xC2:y=x2在第一象限内的交点为P.

(1)求过点P且与曲线C2相切的直线方程;

(2)求两条曲线所围图形(如图所示的阴影部分)的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块扇形铁皮OAB,∠AOB=60°,OA=72cm,要剪下来一个扇环形ABCD,作圆台容器的侧面,并且在余下的扇形OCD内能剪下一块与其相切的圆形使它恰好作圆台容器的下底面(大底面).试求:

(1)AD应取多长?

(2)容器的容积为多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点.

(1)求圆A的方程;

(2)当|MN|=2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2008奥运会上两名射击运动员甲、乙在比赛中打出如下成绩:甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;用茎叶图表示甲,乙两个成绩;并根据茎叶图分析甲、乙两人成绩如图所示,茎表示成绩的整数环数,叶表示小数点后的数字.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=2sin(3x+φ)的图象向右平移 个单位后得到的图象关于点( ,0)对称,则|φ|的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把ABDACD折成互相垂直的两个平面后,某学生得出下列四个结论:

BDAC②△BAC是等边三角形;

③三棱锥DABC是正三棱锥; ④平面ADC⊥平面ABC

其中正确的是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

如图,在四棱锥PABCD中,底面ABCD是矩形,PA平面ABCDAP=ABBP=BC=2EF分别是PB,PC的中点.

()证明:EF平面PAD

()求三棱锥EABC的体积V.

查看答案和解析>>

同步练习册答案