精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线在第一象限内的点到焦点F的距离为

(1)求抛物线的方程;

(2)若直线与抛物线C相交于AB两点,与圆相交于DE两点,O为坐标原点,,试问:是否存在实数a,使得|DE|的长为定值?若存在,求出a的值;若不存在,请说明理由.

【答案】(1);(2)时,为定长.

【解析】

(1)利用抛物线的定义,到焦点距离等于到准线距离即可求得结果;(2)设直线AB的方程,代入抛物线方程,利用韦达定理及向量的坐标运算,求得m的值,利用圆的弦长公式,求得|DE|,即可得到答案.

(1)∵点,∴,解得

故抛物线的方程为:

(2)设直线的方程为,代入抛物线方程可得

,则,①

得:

整理得,②

将①代入②解得,∴直线

∵圆心到直线的距离,∴

显然当时,的长为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对200名学生做了问卷调查,列联表如下:

参加文体活动

不参加文体活动

合计

学习积极性高

80

学习积极性不高

60

合计

200

已知在全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为.

1)请将上面的列联表补充完整;

2)是否有99.9%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;

3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的三个内角的对边分别为,已知向量,且.

(Ⅰ)求角的值;

(Ⅱ)若,求边的最小值.

(Ⅲ)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边三角形的中线与中位线相交于,已知旋转过程中的一个图形,下列命题中,错误的是

A. 恒有

B. 异面直线不可能垂直

C. 恒有平面⊥平面

D. 动点在平面上的射影在线段

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的是( )

A. 先把高二年级的2000名学生编号为1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为的学生,这样的抽样方法是系统抽样法;

B. 独立性检验中,越大,则越有把握说两个变量有关;

C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1;

D. 若一组数据1、a、3的平均数是2,则该组数据的方差是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数在区间[1,2]上的最大值;

(2)设在(0,2)内恰有两个极值点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人射击,已知甲每次击中目标的概率为,乙每次击中目标的概率为

1)两人各射击一次,求至少有一人击中目标的概率;

2)若制定规则如下:两人轮流射击,每人至多射击2次,甲先射,若有人击中目标即停止射击.

①求乙射击次数不超过1次的概率;

②记甲、乙两人射击次数和为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个正多边形的每条边和对角线恰各染成2018种颜色之一,且所有边及对角线不全同色.若正多边形中不存在两色三角形(即三角形的三边恰被染成两种颜色),则称该多边形的染色是“和谐的”.求最大的正整数 ,使得存在一个和谐的染色正边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案