精英家教网 > 高中数学 > 题目详情

【题目】在以下关于向量的命题中,不正确的是(
A.若向量 ,向量 (xy≠0),则
B.若四边形ABCD为菱形,则
C.点G是△ABC的重心,则
D.△ABC中, 的夹角等于A

【答案】D
【解析】解:对于A,若向量 =(x,y),向量 =(﹣y,x),则 =0,则 ,故A正确; 对于B,由菱形是邻边相等的平行四边形,故四边形ABCD是菱形的充要条件是 ,且| |=| |,故B正确;
对于C,由重心的性质,可得 G是△ABC的重心,故C正确;
对于D,在△ABC中, 的夹角等于角A的补角,故D不正确.
∴关于向量的命题中,不正确的是D.
故选:D.
根据向量数量积判断两个向量的垂直关系的方法,可判断A;根据菱形的定义及相等向量及向量的模的概念,可判断B;根据三角形重心的性质,可判断C;根据向量夹角的定义,可判断D;进而得到答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an
(1)求数列{an},{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Sn
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,a≠1,设p:函数y=loga(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,如果都是整数,就称点为整点,下列命题中正确的是__________.(写出所有正确命题的编号)

①存在这样的直线,既不与坐标轴平行又不经过任何整点;

②若都是无理数,则直线不经过任何整点;

③直线经过无穷多个整点,当且仅当经过两个不同的整点;

④直线经过无穷多个整点的充分必要条件是: 都是有理数;

⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三次函数的导函数 为实数.

(1)若曲线在点处切线的斜率为12,求的值;

2)若在区间上的最小值,最大值分别为1,且,求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数在点处切线方程为y=3x+b,求a,b的值;

(Ⅱ)当a>0时,求函数在[1,2]上的最小值;

(Ⅲ)设,若对任意 ,均存在,使得,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(1,2), =(﹣3,2), 当k=时,(1)k + ﹣3 垂直;
当k=时,(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)…[90,100]后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ) 求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ) 设学生甲、乙的成绩属于区间[40,50),现从成绩属于该区间的学生中任选两人,求甲、乙中至少有一人被选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某小区为美化环境,准备在小区内草坪的一侧修建一条直路,另一侧修建一条休闲大道,它的前一段是函数 的一部分,后一段是函数 ),时的图象,图象的最高点为 ,垂足为.

(1)求函数的解析式;

(2)若在草坪内修建如图所示的儿童游乐园PMFE,问点落在曲线上何处时,儿童乐园的面积最大?

查看答案和解析>>

同步练习册答案