【题目】为了传承经典,促进学生课外阅读,某校从高中年级和初中年级各随机抽取100名学生进行有关对中国四大名著常识了解的竞赛.图1和图2分别是高中年级和初中年级参加竞赛的学生成绩按照分组,得到的频率分布直方图.
(1)分别计算参加这次知识竞赛的两个学段的学生的平均成绩;
(2)规定竞赛成绩达到为优秀,经统计初中年级有3名男同学,2名女同学达到优秀,现从上述5人中任选两人参加复试,求选中的2人恰好都为女生的概率;
(3)完成下列的列联表,并回答是否有99%的把握认为“两个学段的学生对四大名著的了解有差异”?
附:
临界值表:
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
科目:高中数学 来源: 题型:
【题目】选修4-4:极坐标与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数).
(1)求曲线的普通方程;
(2)经过点(平面直角坐标系中点)作直线交曲线于, 两点,若恰好为线段的三等分点,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数.
(1)求证:曲线在点处的切线过定点;
(2)若是在区间上的极大值,但不是最大值,求实数的取值范围;
(3)求证:对任意给定的正数 ,总存在,使得在上为单调函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校男女篮球队各有10名队员,现将这20名队员的身高绘制成茎叶图(单位:).男队员身高在以上定义为“高个子”,女队员身高在以上定义为“高个子”,其他队员定义为“非高个子”,按照“高个子”和“非高个子”用分层抽样的方法共抽取5名队员.
(1)从这5名队员中随机选出2名队员,求这2名队员中有“高个子”的概率;
(2)求这5名队员中,恰好男女“高个子”各1名队员的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为(为参数),若以直角坐标系的点为极点,方向为极轴,选择相同的长度单位建立极坐标系,得曲线的极坐标方程为.
(1)求直线的倾斜角和曲线的直角坐标方程;
(2)若直线与曲线交于、两点,设点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】漳州市博物馆为了保护一件珍贵文物,需要在馆内一种透明又密封的长方体玻璃保护罩内充入保护液体.该博物馆需要支付的总费用由两部分组成:①罩内该种液体的体积比保护罩的容积少0.5立方米,且每立方米液体费用500元;②需支付一定的保险费用,且支付的保险费用与保护罩容积成反比,当容积为2立方米时,支付的保险费用为4000元.
(Ⅰ)求该博物馆支付总费用与保护罩容积之间的函数关系式;
(Ⅱ)求该博物馆支付总费用的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com