(07年湖北卷理)(12分)
如图,在三棱锥中,底面,,是的中点,且,.
(I)求证:平面;
(II)当角变化时,求直线与平面所成的角的取值范围.
本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.
解析:解法1:(Ⅰ),是等腰三角形,又是的中点,
,又底面..于是平面.
又平面,平面平面.
(Ⅱ) 过点在平面内作于,则由(Ⅰ)知平面.
连接,于是就是直线与平面所成的角.
在中,;
设,在中,,.
,,.又,.
即直线与平面所成角的取值范围为.
解法2:(Ⅰ)以所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,
则,
于是,,,.
从而,即.
同理,
即.又,平面.
又平面.
平面平面.
(Ⅱ)设直线与平面所成的角为,平面的一个法向量为,
则由.
得
可取,又,
于是,
,,.
又,.
即直线与平面所成角的取值范围为.
解法3:(Ⅰ)以点为原点,以所在的直线分别为轴、轴,建立如图所示的空间直角坐标系,
则,
,于是,,.
从而,即.
同理,即.
又,平面.
又平面,
平面平面.
(Ⅱ)设直线与平面所成的角为,平面的一个法向量为,
则由,得
可取,又,
于是,
,,.
又,,
即直线与平面所成角的取值范围为.
解法4:以所在直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,
则.
设.
(Ⅰ),
,
即.
,
即.
又,平面.
又平面,
平面平面.
(Ⅱ)设直线与平面所成的角为,
设是平面的一个非零法向量,
则取,得.
可取,又,
于是,
,关于递增.
,.
即直线与平面所成角的取值范围为.
科目:高中数学 来源: 题型:
(07年湖北卷理)(12分)
在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:
(I)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;
(II)估计纤度落在中的概率及纤度小于的概率是多少?
(III)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表.据此,估计纤度的期望.
分组 | 频数 |
合计 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com