【题目】2014年“五一节”期间,高速公路车辆较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如图所示的频率分布直方图,据图解答下列问题:
(1)求a的值,并说明交警部门采用的是什么抽样方法?
(2)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1);
(3)若该路段的车速达到或超过90km/h即视为超速行驶,试根据样本估计该路段车辆超速行驶的概率.
【答案】
(1)解:由频率分布直方图知:(a+0.05+0.04+0.02+0.02+0.005+0.005)×5=1,
∴a=0.06,
该抽样方法是系统抽样;
(2)解:根据众数是最高矩形底边中点的横坐标,∴众数为77.5;
∵前三个小矩形的面积和为0.005×5+0.020×5+0.040×5=0.325,
第四个小矩形的面积为0.06×5=0.3,
∴中位数在第四组,设中位数为75+x,则0.325+0.06×x=0.5x≈2.9,
∴数据的中位数为77.9;
(3)解:样本中车速在[90,95)有0.005×5×120=3(辆),
∴估计该路段车辆超速的概率P= = .
【解析】(1)根据频率分布直方图中所有矩形的面积和为1求得a值,根据相同抽样方法的特征判断其抽样方法;(2)根据众数是最高矩形底边中点的横坐标求众数;根据中位数是从左数小矩形面积和为0.5的矩形底边上点的横坐标求中位数;(3)利用直方图求出样本中车速在[90,95)频数,利用个数比求超速车辆的概率.
【考点精析】解答此题的关键在于理解平均数、中位数、众数的相关知识,掌握⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据.
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程; (写一般式)
(2)当直线l的倾斜角为45°时,求弦AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B,C为锐角△ABC的内角, =(sinA,sinBsinC), =(1,﹣2), ⊥ .
(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;
(2)求tanAtanBtanC的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若点O(0,0)和点 分别是双曲线 ﹣y2=1(a>0)的中心和右焦点,A为右顶点,点M为双曲线右支上的任意一点,则 的取值范围为( )
A.[﹣1,+∞)
B.(0,+∞)
C.[﹣2,+∞)
D.[0,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆 的左右焦点分别为F1 , F2 , 离心率为 ,过点F1且垂直于x轴的直线被椭圆截得的弦长为 ,直线l:y=kx+m与椭圆交于不同的A,B两点.
(1)求椭圆C的方程;
(2)若在椭圆C上存在点Q满足: (O为坐标原点).求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列{an}中,a1=2,a3+a5=16. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)如果a2 , am , a2m成等比数列,求正整数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1 , M,N分别是A1B,B1C1的中点.
(1)求证:MN⊥平面A1BC;
(2)求直线BC1和平面A1BC所成的角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com