精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。

(1)   求椭圆的方程;

(2)   设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值

 

【答案】

,

【解析】(1)解:由,得,再由,得

由题意可知,

解方程组 得 a=2,b=1

所以椭圆的方程为

(2)解:由(1)可知A(-2,0)。设B点的坐标为(x1,,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),

于是A,B两点的坐标满足方程组

由方程组消去Y并整理,得

设线段AB是中点为M,则M的坐标为

以下分两种情况:

(1)当k=0时,点B的坐标为(2,0)。线段AB的垂直平分线为y轴,于是

(2)当K时,线段AB的垂直平分线方程为

令x=0,解得

整理得

综上

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分13分)

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线轴相交于定点

(Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线轴相交于定点

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;

(Ⅲ)在(Ⅱ)的条件下,证明直线轴相交于定点.

 

 

查看答案和解析>>

科目:高中数学 来源:四川省成都外国语学校2011-2012学年高三2月月考(数学文). 题型:解答题

 

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线轴相交于定点

(Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆交于两点,求的取值范围.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省成都外国语学校2011-2012学年高三2月月考(数学理) 题型:解答题

 

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线轴相交于定点

(Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆交于两点,求的取值范围.

 

 

查看答案和解析>>

同步练习册答案