精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,直线的参数方程为为参数),曲线的方程为.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.

1)求直线和曲线的极坐标方程;

2)曲线分别交直线和曲线于点的最大值及相应的值.

【答案】1 2时, 取得最大值

【解析】试题分析:(1)利用代入法消去参数可得直线的普通方程,将曲线的方程化为一般式,利用公式 ,即可得到直线和曲线的极坐标方程;(2)直线的极坐标方程为,令,可得,由曲线的极坐标方程可得,所以,利用三角函数的有界性可得结果.

试题解析:1,∴直线的普通方程为:

直线的极坐标方程为.

曲线的普通方程为

的参数方程为:

(2)直线的极坐标方程为,令,则

,即

,即时, 取得最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《聪明花开——莆仙话挑战赛》栏目共有五个项目,分别为“和一斗”“斗麻利”“文儒生”“放独步”“正功夫”.《聪明花开》栏目组为了解观众对项目的看法,设计了“你最喜欢的项目是哪一个”的调查问卷(每人只能选一个项目),对现场观众进行随机抽样调查,得到如下数据(单位:人):

和一斗

斗麻利

文儒生

放独步

正功夫

115

230

115

345

460

(1)在所有参与该问卷调查的人中,用分层抽样的方法抽取n人座谈,其中恰有4人最喜欢“斗麻利”,求n的值及所抽取的人中最喜欢“和一斗”的人数;

(2)在(1)中抽取的最喜欢“和一斗”和“斗麻利”的人中,任选2人参加栏目组互动,求恰有1人最喜欢“和一斗”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,其中实数满足,若的最大值为,则 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上动点到点的距离与到直线的距离之比为,记动点的轨迹为曲线.

1)求曲线的方程;

2)设是曲线上的动点,直线的方程为.

①设直线与圆交于不同两点 ,求的取值范围;

②求与动直线恒相切的定椭圆的方程;并探究:若是曲线 上的动点,是否存在直线 恒相切的定曲线?若存在,直接写出曲线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一二三等奖.现有某考场的两科考试成绩数据统计如下图所示,其中数学科目成绩为二等奖的考生有人.

(Ⅰ)求该考场考生中语文成绩为一等奖的人数;

(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的学生中各抽取人,进行综合素质测试,将他们的综合得分绘成茎叶图,求样本的平均数及方差并进行比较分析;

(Ⅲ)已知本考场的所有考生中,恰有人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取人进行访谈,求两人两科成绩均为一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列是公差为2的等差数列,数列满足b1=1,b2=2,且anbnbnnbn1.

(1)求数列,的通项公式;

(2)设数列满足,数列的前n项和为,若不等式

对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断函数的奇偶性,并加以证明;

2)用定义证明上是减函数;

3)函数上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆内接四边形ABCD的边

Ⅰ)求角C的大小和BD的长;

Ⅱ)求四边形ABCD的面积及外接圆的半径.

查看答案和解析>>

同步练习册答案