【题目】如图,在三棱柱中,侧面为正方形,侧面为菱形,,平面平面.
(1)求直线与平面所成角的正弦值;
(2)求二面角的余弦值.
【答案】(1);(2).
【解析】
(1)证明出平面,然后以点为坐标原点,分别以,所在的直线为轴,建立空间直角坐标系,设正方形的边长为,利用空间向量法可计算出直线与平面所成角的正弦值;
(2)计算出平面的一个法向量,以及平面的一个法向量,利用空间向量法可计算出二面角的余弦值.
(1)因为四边形为正方形,所以,
因为平面平面,平面平面,
平面,所以平面.
以点为坐标原点,分别以,所在的直线为轴,建立如图所示的空间直角坐标系.
不妨设正方形的边长为,则,.
在菱形中,因为,所以,所以.
因为平面的法向量为,
设直线与平面所成角为,则,,
即直线与平面所成角的正弦值为;
(2)由(1)可知,,所以.
设平面的一个法向量为,
因为即
取,,,即.
设平面的一个法向量为,因为,,
因为,所以,取.
设二面角的平面角为,
则,
所以二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面四边形为正方形,已知平面,,.
(1)证明:;
(2)求与平面所成角的正弦值;
(3)在棱上是否存在一点,使得平面平面?若存在,求的值并证明,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(I)求Z的分布列和均值;
(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的左焦点为,是上一点,且与轴垂直,,分别为椭圆的右顶点和上顶点,且,且的面积是,其中是坐标原点.
(1)求椭圆的方程.
(2)若过点的直线,互相垂直,且分别与椭圆交于点,,,四点,求四边形的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某校中小学生人数和近视情况分别如图所示.为了解该校中小学生的近视形成原因,用分层抽样的方式从中抽取一个容量为50的样本进行调查.
(1)求样本中高中生、初中生及小学生的人数;
(2)从该校初中生和高中生中各随机抽取1名学生,用频率估计概率,求恰有1名学生近视的概率;
(3)假设高中生样本中恰有5名近视学生,从高中生样本中随机抽取2名学生,用表示2名学生中近视的人数,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·衢州调研)已知四棱锥P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中点M是顶点P在底面ABCD的射影,N是PC的中点.
(1)求证:平面MPB⊥平面PBC;
(2)若MP=MC,求直线BN与平面PMC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.证明:
(1)存在唯一x0∈(0,1),使f(x0)=0;
(2)存在唯一x1∈(1,2),使g(x1)=0,且对(1)中的x0,有x0+x1<2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com