精英家教网 > 高中数学 > 题目详情
16.函数$f(x)=\left\{\begin{array}{l}\sqrt{1-{{(x+1)}^2}},(-2≤x≤0)\\{x^2}-x,(0<x≤1)\end{array}\right.$的图象与x轴所围成的封闭图形面积为$\frac{1}{6}+\frac{π}{2}$.

分析 利用定积分表示封闭图形的面积,然后计算即可.

解答 解:∵$f(x)=\left\{\begin{array}{l}\sqrt{1-{{(x+1)}^2}},(-2≤x≤0)\\{x^2}-x,(0<x≤1)\end{array}\right.$,
∴函数$f(x)=\left\{\begin{array}{l}\sqrt{1-{{(x+1)}^2}},(-2≤x≤0)\\{x^2}-x,(0<x≤1)\end{array}\right.$的图象与x轴所围成的封闭图形面积为$\frac{π}{2}$+${∫}_{0}^{1}(x-{x}^{2})dx$=$\frac{π}{2}$+$(\frac{1}{2}{x}^{2}-\frac{1}{3}{x}^{3}){|}_{0}^{1}$=$\frac{1}{6}+\frac{π}{2}$.
故答案为:$\frac{1}{6}+\frac{π}{2}$.

点评 本题考查了利用定积分求曲边梯形的面积;关键是利用定积分表示出封闭图形的面积,然后计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.李庄村电费收取有以下两种方案供农户选择:
方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.
方案二:不收管理费,每度0.58元.
(1)求方案一收费L(x)元与用电量x(度)间的函数关系;
(2)李刚家九月份按方案一交费35元,问李刚家该月用电多少度?
(3)李刚家月用电量在什么范围时,选择方案一比选择方案二更好?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足2an+1=an+an+2+k(n∈N*,k∈R),且a1=2,a3+a5=-4.
(1)若k=0,求数列{an}的前n项和Sn
(2)若a4=-1,求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在正方体ABCD-A1B1C1D1中,点O为线段BD的中点.设点P在线段B1C1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(  )
A.$[\frac{{\sqrt{6}}}{3},1]$B.$[\frac{{\sqrt{2}}}{3},1]$C.$[\frac{{\sqrt{2}}}{3},\frac{{2\sqrt{2}}}{3}]$D.$[\frac{{\sqrt{6}}}{3},\frac{{2\sqrt{2}}}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\sqrt{-{x^2}+2x+8}$的单调递增区间是(  )
A.(-∞,1)B.(-2,1)C.(1,4)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知全集U=R,集合A={x|-1≤x≤3},集合B={x|log2(x-2)>1},则A∪B=[-1,3]∪(4,+∞);A∩(∁UB)=[-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等差数列{an}为递增数列且满足a1+a10=10,则a5的取值范围是(  )
A.(5,10)B.(5,+∞)C.(-∞,5)D.(10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|x2-3x+2<0},B={x|1<x<a}(a为实常数).
(Ⅰ)若a=$\frac{3}{2}$,求A∩B;  
(Ⅱ)若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,
(1)p是q的什么条件?
(2)求实数a的取值范围.

查看答案和解析>>

同步练习册答案