精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知曲线C1(t为参数),C2(m为参数).

(1)将C1,C2的方程化为普通方程,并说明它们分别表示什么曲线;

(2)设曲线C1与C2的交点分别为A,B,O为坐标原点,求△OAB的面积的最小值.

【答案】1sinθx-cosθy2sin θ=0y24x,(24

【解析】

(1)C1:将两边同时乘以两边同时乘以,消去参数t即可,C2消去m即可;

(2)联立得y2sinθ﹣4ycosθ﹣8sinθ=0,设A(x1,y1),B(x2,y2),则y1+y2,y1y2=﹣8,代入S△OAB|y1﹣y2|计算即可.

(1)由C1(t为参数)消去t得C1:cosθy=sinθ(x﹣2),得sinθx-cosθy-2sinθ=0,

由C2(m为参数)消去m得C2:y2=4x,

(2)联立消去x得y2sinθ﹣4ycosθ﹣8sinθ=0,

设A(x1,y1),B(x2,y2),则y1+y2,y1y2=﹣8,又C1与x轴的交点(2,0)

∴S△OAB|y1﹣y2|

所以 sinθ=1时,SOAB取得最小值4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计),易拉罐的体积为,设圆柱的高度为,底面半径为,且,假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为,易拉罐上下底面的制造费用均为为常数).

(1)写出易拉罐的制造费用(元)关于的函数表达式,并求其定义域;

(2)求易拉罐制造费用最低时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆为左右焦点,为短轴端点,长轴长为4,焦距为,且,的面积为.

(Ⅰ)求椭圆的方程

(Ⅱ)设动直线椭圆有且仅有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在求出点的坐标,若不存在.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点为正四棱锥的底面中心,四边形为矩形,且

1)求正四棱锥的体积;

2)设为侧棱上的点,且,求直线和平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作一直线与双曲线相交于两点,若中点,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点务极点,轴正半轴为极轴建立极坐标系,曲线

(1)求曲线的直角坐标方程;

(2)曲线的交点为,求以为直径的圆与轴的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,.现沿对角线折起,使点到达点.点分别在上,且四点共面.

(1)求证:

(2)若平面平面,平面与平面夹角为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x-1(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案