精英家教网 > 高中数学 > 题目详情
4.已知,如图,空间四边形ABCD中,E、F分别是AB、AD的中点,求证:EF∥平面BCD.

分析 连接BD,利用中位线定理证明EF∥BD,即可证明EF∥平面BCD.

解答 证明:如图所示,
连接BD,
∵E、F分别为AB、AD的中点,
∴EF为△ABD的中位线,
∴EF∥BD,
又∵EF在平面BCD外,
BD在平面BCD内,
∴EF∥平面BCD.

点评 本题主要考查了空间中直线与平面平行的证明问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,已知D是△ABC边BC上一点.
(1)若B=45°,且AB=DC=7,求△ADC的面积;
(2)当∠BAC=90°时,若BD:DC:AC=2:1:$\sqrt{3}$,且AD=2$\sqrt{2}$,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$的值
(2)化简:$\frac{sin(\frac{π}{2}+α)cos(\frac{5π}{2}-α)tan(-π+α)}{tan(7π-α)sin(π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x2+ax+4,若对任意的x∈(0,2],f(x)≤6恒成立,则实数a的最大值为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=3sin($\frac{1}{2}$x+$\frac{π}{6}$)-1
(1)说明该函数图象可由y=sinx的图象经过怎样平移和伸缩变换得到的.
(2)求函数的最值及满足最值的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知二次函数f(x)图象的对称轴是直线x=2,且f(0)=3,f(2)=1,若在[0,m]有最大值3,最小值1,则实数m的取值范围是(  )
A.(0,+∞)B.[2,+∞)C.(0,2]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=(m2-1)xm是幂函数,且在(0,+∞)上是增函数,则实数m的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点P在圆x2+y2=1运动,点M的坐标为M(2,0),Q为线段PM的中点,则点Q的轨迹方程为(x-1)2+y2=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各式正确的是(  )
A.43<33B.log0.54<log0.56C.($\frac{1}{2}$)-3>($\frac{1}{2}$)3D.lg1.6<lg1.4

查看答案和解析>>

同步练习册答案