精英家教网 > 高中数学 > 题目详情
20.直线 l:(2m+1)x+(m+1)y-7m-4=0(m∈R)被圆C:(x-1)2+(y-2)2=25 所截得的最短的弦长为4$\sqrt{5}$.

分析 由题意可得直线l经过定点A(3,1).要使直线l被圆C截得的弦长最短,需CA和直线l垂直,利用勾股定理可得结论.

解答 解:圆C:(x-1)2+(y-2)2=25的圆心C(1,2)、半径为5,
直线l:(2m+1)x+(m+1)y-7m-4=0,即 m(2x+y-7)+(x+y-4)=0,
由$\left\{\begin{array}{l}{2x+y-7=0}\\{x+y-4=0}\end{array}\right.$,求得x=3,y=1,故直线l经过定点A(3,1).
要使直线l被圆C截得的弦长最短,需CA和直线l垂直,|CA|=$\sqrt{(3-1)^{2}+(1-2)^{2}}$=$\sqrt{5}$,
∴最短的弦长为2$\sqrt{25-5}$=4$\sqrt{5}$.
故答案为4$\sqrt{5}$.

点评 本题主要考查直线过定点问题,直线和圆的位置关系,勾股定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$
(Ⅰ) 求f(x)的最小正周期;
(Ⅱ).在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f(2A)=0,且a=1求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算${(\frac{8}{27})^{-\;\frac{2}{3}}}+lg25+lg4+{3^{{{log}_3}2}}$=$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知变量x,y之间具有线性相关关系,其散点图如图所示,则其回归方程可能为(  )
A.$\stackrel{∧}{y}$=1.5x+2B.$\stackrel{∧}{y}$=-1.5x+2C.$\stackrel{∧}{y}$=1.5x-2D.$\stackrel{∧}{y}$=-1.5x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知不等式f(x)=3$\sqrt{2}$sin $\frac{x}{4}$•cos $\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$+m≤0,对于任意的-$\frac{5π}{6}$≤x≤$\frac{π}{6}$恒成立,则实数m的取值范围是(  )
A.m≥$\sqrt{3}$B.m≤$\sqrt{3}$C.m≤-$\sqrt{3}$D.-$\sqrt{3}$≤m≤$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.全集U={-1,0,1,2,3,4,5,6 },A={3,4,5 },B={1,3,6 },那么集合{ 2,-1,0}是(  )
A.$\frac{π}{3}$B.$\frac{3}{5}$C.UA∩∁UBD.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x2•sin(x-π),则其在区间[-π,π]上的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知实数x,y满足条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y≤0,y≤3\end{array}$则z=2x+y的最大值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线f(x)=k0x+b与曲线g(x)=$\frac{{k}^{2}}{x}$交于点M(m,-1),N(n,2),则不等式f-1(x)≥g-1(x)的解集为[-1,0)∪[2,+∞).

查看答案和解析>>

同步练习册答案