精英家教网 > 高中数学 > 题目详情
11.假如你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00~8:00之间,记“你父亲在离开家前能得到报纸”为事件A,求事件A发生的概率.

分析 根据题意,设送报人到达的时间为X,小明父亲离家去工作的时间为Y;则(X,Y)可以看成平面中的点,分析可得由试验的全部结果所构成的区域并求出其面积,同理可得事件A所构成的区域及其面积,由几何概型公式,计算可得答案.

解答 解:设送报人到达的时间为X,小明父亲离家去工作的时间为Y,
以横坐标表示报纸送到时间,以纵坐标表示父亲离家时间,建立平面直角坐标系,父亲在离开家前能得到报纸的事件构成区域是下图:
 由于随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.
根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,
所以P(A)=$\frac{1-\frac{1}{2}×\frac{1}{2}×\frac{1}{2}}{1}$=$\frac{7}{8}$.

点评 本题考查几何概型的计算,解题的关键在于设出X、Y,将(X,Y)以及事件A在平面直角坐标系中表示出来.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.圆(x+1)2+(y-4)2=25被直线4x-3y-4=0截得的弦长是(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax3+bx2-3x(a,b∈R),曲线y=f(x)在点(1,f(1))处的切线方程为y+2=0
(1)求函数f(x)的解析式
(2)当x∈[-3,2]时,求f(x)的最大值和最小值
(3)过点M(2,2)作曲线y=f(x)的切线l,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{\begin{array}{l}({2-a})x-\frac{a}{2},({x<1})\\{log_a}x,({x≥1})\end{array}\right.$是R上的增函数,那么实数a的取值范围是[$\frac{4}{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an},{bn}满足:a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{{b}_{n}}{1-{{a}_{n}}^{2}}$
(1)证明:{$\frac{1}{{b}_{n}-1}$}是等差数列,并求数列{bn}的通项公式;
(2)设Sn=a1a2+a2a3+a3a4+…+anan+1,不等式4aSn<bn对任意的n∈N*恒成立,求实数a的取值范围;
(3)是否存在正整数m,k,使($\frac{1}{{a}_{k}}$-2)2=($\frac{1}{{a}_{m}}$-3)($\frac{1}{{a}_{m}}$-2)+19成立?若存在,求出m,k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设曲线$y=\frac{2}{x-1}$在点(3,1)处的切线与直线ax-y+1=0垂直,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.正项数列{an}的前n项和为sn,且$2\sqrt{s_n}={a_n}+1$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={a_n}•{2^{{a_n}+1}}$,数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以直角坐标系xOy的原点为极点,x轴的正半轴为极轴,且两坐标系取相同的长度单位,已知点N的极坐标为(2,$\frac{π}{2}$),M是曲线C:p2•(cos2θ-sin2θ)+1=0上任意一点,点P满足$\overrightarrow{OP}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,设点P的轨迹为曲线Q.
(1)求曲线Q的直角坐标方程;
(2)若直线l:$\left\{\begin{array}{l}{x=-2-t}\\{y=2-\sqrt{3}t}\end{array}\right.$(t为参数)与曲线Q的交点为A、B,求|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数集A={a1,a2,…,an}(1≤a1<a2<…an,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),aiaj与$\frac{a_j}{a_i}$两数中至少有一个属于A.
(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;
(2)证明:a1=1,且$\frac{{{a_1}+{a_2}+…+{a_n}}}{{a_1^{-1}+a_2^{-1}+…+a_n^{-1}}}={a_n}$;
(3)当n=5时,若a2=2,求集合A.

查看答案和解析>>

同步练习册答案