【题目】长沙某超市计划按月订购一种冰激凌,每天进货量相同,进货成本为每桶5元,售价为每桶7元,未售出的冰激凌以每桶3元的价格当天全部处理完毕.根据往年销售经验,每天的需求量与当天最高气温(单位:)有关,如果最高气温不低于,需求量为600桶;如果最高气温(单位:)位于区间,需求量为400桶;如果最高气温低于,需求量为200桶.为了确定今年九月份的订购计划,统计了前三年九月份各天的最高气温数据,得下面的频数分布表:
最高气温() | ||||||
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求九月份这种冰激凌一天的需求量(单位:桶)的分布列;
(2)设九月份一天销售这种冰激凌的利润为(单位:元),当九月份这种冰激凌一天的进货量(单位:桶)为多少时,的均值取得最大值?
【答案】(1)见解析;(2)当时,的数学期望取得最大值640。
【解析】
(1)由已知得,的可能取值为200,400,600,记六月份最高气温低于20为事件,最高气温位于区间,为事件,最高气温不低于25为事件,结合频数分布表,用频率估计概率,能求出六月份这种冰激凌一天的需求量(单位:桶)的分布列.
(2)结合题意得当时,,分别求出当,,时的数学期望,由此能求出当时,的数学期望取得最大值640.
(1)由已知得,的可能取值为200,400,600,记六月份最高气温低于20为事件,最高气温位于区间,为事件,最高气温不低于25为事件,
根据题意,结合频数分布表,用频率估计概率,
可知,
故六月份这种冰激凌一天的需求量(单位:桶)的分布列为:
200 | 400 | 600 | |
(2)结合题意得当时,,
当时,,
当时,
,
当时,
,
所以当时,的数学期望取得最大值640.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x,x∈R.
(1)当m取何值时,方程|f(x)-2|=m有一个解?两个解?
(2)若不等式[f(x)]2+f(x)-m>0在R上恒成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解,两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).
(1)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;
(2)从所有咀嚼槟榔颗数在20颗以上(包含20颗)的同学中随机抽取3人,求被抽到班同学人数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | 0.050 | |
第2组 | n | 0.350 | |
第3组 | 30 | p | |
第4组 | 20 | 0.200 | |
第5组 | 10 | 0.100 | |
合计 | 100 | 1.000 |
(1)求频率分布表中n,p的值,并估计该组数据的中位数(保留l位小数);
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且满足:
(1)证明:是等比数列,并求数列的通项公式.
(2)设,若数列是等差数列,求实数的值;
(3)在(2)的条件下,设 记数列的前项和为,若对任意的存在实数,使得,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、…..,在数学上,斐波那契数列以如下被递推的方法定义:,,.这种递推方法适合研究生活中很多问题.比如:一六八中学食堂一楼到二楼有15个台阶,某同学一步可以跨一个或者两个台阶,则他到二楼就餐有( )种上楼方法.
A.377B.610C.987D.1597
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.命题“若,则”的逆否命题为:“若,则”
B.“”是“”的充分而不必要条件
C.若且为假命题,则、均为假命题
D.命题“存在,使得”,则非“任意,均有”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com