精英家教网 > 高中数学 > 题目详情
已知向量
a
b
满足|
a
|=1,|
b
|=4,且
a
b
 =2
,则
a
b
夹角为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2
分析:本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,用数量积列出等式,变化出夹角的余弦表示式,代入给出的数值,求出余弦值,注意向量夹角的范围,求出适合的角.
解答:解:∵向量a、b满足|
a
|=1,|
b
|=4
,且
a
.
b
=2

a
b
的夹角为θ,
则cosθ=
a
b
|
a
|•|
b
|
=
1
2

∵θ∈【0π】,
∴θ=
π
3

故选C.
点评:两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,夹角、模长、数量积可做到知二求一,数量积的主要应用:①求模长;②求夹角;③判垂直
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
+
b
|=
3
|
a
-
b
|
|
a
|=|
b
|=1
,则|
3a
-2
b
|
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=2,|
b
|=1,
a
b
的夹角为60°,则|
a
-2
b
|等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=
2
,|
b
|=3,
a
b
的夹角为45°,求|3
a
-
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a,b满足|a|=2,|b|=3,|2a+b|=
37
,则a与b
的夹角为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知向量
a
b
满足|
a
|=2|
b
|≠0,且关于x的函数f(x)=2x3+3|
a
|x2+6
a
b
x+5 在实数集R上单调递增,则向量
a
b
的夹角的取值范围是(  )

查看答案和解析>>

同步练习册答案