精英家教网 > 高中数学 > 题目详情

【题目】

有甲、乙、丙、丁四名网球运动员,通过对过去战绩的统计,在一场比赛中,甲对乙、丙、丁取胜的概率分别为.

)若甲和乙之间进行三场比赛,求甲恰好胜两场的概率;

)若四名运动员每两人之间进行一场比赛,设甲获胜场次为,求随机变量的分布列及期望

【答案】(1) ,(2) .

【解析】试题分析:(1)本题符合独立重复试验,试验发生3次,每一次试验甲对乙取胜的概率是0.6,根据独立重复试验的概率公式,得到甲和乙之间进行三场比赛,甲恰好胜两场的概率.(2)四名运动员每两人之间进行一场比赛,设甲获胜场次为ξ,由题意知随机变量ξ的可能取值为0,1,2,3.根据变量对应的事件写出概率,写出分布列和期望.

(Ⅰ)解:甲和乙之间进行三场比赛,甲恰好胜两场的概率为

(Ⅱ)解:随机变量ξ的可能取值为0,1,2,3.

由(Ⅱ)得

.

∴随机变量的分布列为

0

1

2

3

0.008

0.116

0.444

0.432

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,若函数满足:对于给定的 ,存在,使得成立,那么称具有性质.

1)函数 是否具有性质?说明理由;

2)已知函数具有性质,求的最大值;

3)已知函数的定义域为,满足,且的图像是一条连续不断的曲线,问:是否存在正整数n,使得函数具有性质,若存在,求出这样的n的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知含有个元素的正整数集 )具有性质:对任意不大于(其中)的正整数,存在数集的一个子集,使得该子集所有元素的和等于

(Ⅰ)写出 的值;

(Ⅱ)证明:“ ,…, 成等差数列”的充要条件是“”;

(Ⅲ)若,求当取最小值时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学为了解本校某年级女生的身高情况,从本校该年级的学生中随机选出100名女生并统计她们的身高(单位: ),得到如图频率分布表:

分组(身高)

(Ⅰ)用分层抽样的方法从身高在的女生中共抽取6人,则身高在的女生应抽取几人?

(Ⅱ)在(Ⅰ)中抽取的6人中,再随机抽取2人,求这2人身高都在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知2acosB=2c﹣b,若O是△ABC外接圆的圆心,且 ,则m=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且tanC= . (Ⅰ)求角C大小;
(Ⅱ)当c=1时,求ab的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,若将f(x)的图象上所有点向右平移 个单位得到函数g(x)的图象,则函数g(x)的单调增区间为(
A. ,k∈Z
B. ,k∈Z
C. ,k∈Z
D. ,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的空间几何体中,四边形是边长为2的正方形, 平面 .

(1)求证:平面平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆上有四个不同的点到直线的距离为2,则的取值范围是(  )

A. (-12,8) B. (-8,12) C. (-13,17) D. (-17,13)

查看答案和解析>>

同步练习册答案