精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥OABCD中,OA⊥底面ABCD,且底面ABCD是边长为2的正方形,且OA2MN分别为OABC的中点.

1)求证:直线MN平面OCD

2)求点B到平面DMN的距离.

【答案】1)证明见详解;(2

【解析】

1)构造平面,使之与平面平行,再通过面面平行证明线面平行即可;

2)通过变换顶点,利用等体积法求得点到平面的距离.

(1)取中点为,连接,如下图所示:

中,因为分别是的中点,

//

在正方形中,因为分别是的中点,

//

又因为平面

平面

故平面//平面

又因为平面,故//平面,即证.

2)连接,如下图所示:

因为点为中点,故

又因为平面,且

.

又在中,容易知

边上的高为

.

设点到平面的距离为

解得.

故点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

1)求图中x的值;

2)求这组数据的平均数和中位数;

3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点两点,且圆心C在直线.

1)求圆C的方程;

2)设,对圆C上任意一点P,在直线MC上是否存在与点M不重合的点N,使是常数,若存在,求出点N坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)g(x)(a>0,且a≠1).

(1)求函数φ(x)f(x)g(x)的定义域;

(2)试确定不等式f(x)≤g(x)x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,e为自然对数的底数.

(1)如果函数在(0, )上单调递增,求m的取值范围;

(2)设,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线交于两点。

(Ⅰ)写出的方程;

(Ⅱ)若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是y=f(x)导函数的图象,对于下列四个判断:

①f(x)在[-2,-1]上是增函数;

②x=-1是f(x)的极小值点;

③f(x)在[-1,2]上是增函数,在[2,4]上是减函数;

④x=3是f(x)的极小值点.

其中判断正确的是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是矩形,沿对角线折起,使得点在平面上的射影恰好落在边上.

(1)求证:平面平面

(2)当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过的直线交抛物线于点,当直线的倾斜角是时, 的中垂线交轴于点.

(1)求的值;

(2)以为直径的圆交轴于点,记劣弧的长度为,当直线点旋转时,求的最大值.

查看答案和解析>>

同步练习册答案