精英家教网 > 高中数学 > 题目详情
14.设tanα=1,且α为第一象限的角,求sinα与cosα.

分析 根据已知利用同角三角函数基本关系式的应用即可求值.

解答 解:∵tanα=1,且α为第一象限的角,
∴cosα=$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=$\sqrt{\frac{1}{1+1}}$=$\frac{\sqrt{2}}{2}$,
sinα=$\sqrt{1-co{s}^{2}α}$=$\sqrt{1-\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$.

点评 本题主要考查了同角三角函数基本关系式的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.中秋节前几天,小毛所在的班级筹划组织一次中秋班会,热心的小毛受班级同学委托,去一家小礼品店为班级的三个小组分别采购三种小礼物:中国结、记事本和笔袋(每种礼物的品种和单价都相同).
三个小组给他的采购计划各不相同,各种礼物的采购数量及价格如下表所示:
  中国结(个) 记事本(本) 笔袋(个) 合计(元)
 小组A 2 1 0 10
 小组B 1 3 1 10
 小组C 0 5 2 30
为了结账,小毛特意计算了各小组的采购总价(见上表合计栏),可是粗心的小毛却不慎抄错了其中一个数字.第二天,当他按照自己的记录去向各小组报销的时候,有同学很快发现其中有错.发现错误的同学并不知道三种小礼物的单价,那么他是如何作出判断的呢?请你用所学的行列式的知识对此加以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}公差不为零,前n项和为Sn,且a1,a2,a5成等比数列,S5=3a4+4.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足${b_n}={a_n}•{3^n}$,求数列{bn}前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线y2=6x上的两个动点A和B,F是焦点,满足AF+BF=7,线段AB的垂直平分线与x轴交于点C,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在△ABC中,∠BAC=60°,线段AD⊥平面ABC,AH⊥平面DBC,H为垂足.求证:H不可能是△BCD的垂心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,D、E分别是△ABC的边BC的三等分点,设$\overrightarrow{AB}$=m,$\overrightarrow{AC}$=n,∠BAC=$\frac{π}{3}$.
(1)用$\overrightarrow{m}$、$\overrightarrow{n}$分别表示$\overrightarrow{AD}$,$\overrightarrow{AE}$;
(2)若$\overrightarrow{AD}$•$\overrightarrow{AE}$=15,|$\overrightarrow{BC}$|=3$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.深夜,一辆出租车涉及一起交通事故,已知该市有两家出租车公司,红色出租车公司和蓝色出租车公司,其中红色出租车公司和蓝色出租车公司分别占整个城市出租车的15%和85%.据现场目击证人说,事故现场的出租车是红色的,并对现场目击证人的辨别能力做了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大嫌疑.你觉得警察这样的认定公平吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过点A(1,0)的直线l1与过点B(-1,4)的直线l2平行,且它们之间的距离为$\sqrt{2}$.求直线l1和l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a为实数,f(x)=a-$\frac{2}{{2}^{x}+1}$.
(1)求a的值,使f(x)的图象关于原点对称;
(2)上述函数是否具有单调性,如果具有单调性,试求出单调区间并加以证明,如果没有单调性,说明理由.

查看答案和解析>>

同步练习册答案