精英家教网 > 高中数学 > 题目详情

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用×+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+2=2,设勾股形中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为(

A.134B.866C.300D.188

【答案】A

【解析】

设三角形的直角边分别为,利用几何概型得出图钉落在小正方形内的概率即可得出结论.

设勾股形的勾股数分别为,则弦为2

故而大正方形的面积为4,小正方形的面积为:

所以图钉落在黄色图形内的概率为:

故落在黄色图形内的图钉数大约为:

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为准确把握市场规律,某公司对其所属商品售价进行市场调查和模型分析,发现该商品一年内每件的售价按月近似呈的模型波动(为月份),已知3月份每件售价达到最高90元,直到7月份每件售价变为最低50.则根据模型可知在10月份每件售价约为_____.(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线与抛物线交于两点.

(Ⅰ)若,求以为直径的圆被轴所截得的弦长;

(Ⅱ)分别过点作抛物线的切线,两条切线交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为

(Ⅰ)求曲线的参数方程;

(Ⅱ)过原点且关于轴对称的两条直线分别交曲线,且点在第一象限,当四边形的周长最大时,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,CDABE的中点.

1)求证:

2)求P到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=0.

(1)求A;

(2)已知a=2,B=,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:x24pyp为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交CAB两点,线段AB的垂直平分线交y轴于点E,抛物线C在点AB处的切线相交于点G.记四边形AEBG的面积为S.

1)求点G的轨迹方程;

2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每 件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检 验方案:将产品每一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次.设该工厂生产件该产品,记每件产品的平均检验次 数为

1)求的分布列及其期望;

2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;

ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)讨论函数_f(x)的单调性;

2)若 ,且2 个不同的极值点 ,求证:.

查看答案和解析>>

同步练习册答案