【题目】△ABC中的内角A,B,C的对边分别为a,b,c,若 b=4c,B=2C (Ⅰ)求cosB;
(Ⅱ)若c=5,点D为边BC上一点,且BD=6,求△ADC的面积.
【答案】解:(Ⅰ)由题意得B=2C,则sinB=sin2C=2sinCcosC, 又 b=4c,所以cosC= = = ,
所以cosB=cos2C=2cos2C﹣1= ;
(Ⅱ)因为c=5, b=4c,所以b=4 ,
由余弦定理得,b2=a2+c2﹣2accosB
则80=a2+25﹣2× a,
化简得,a2﹣6a﹣55=0,
解得a=11或a=﹣5(舍去),
由BD=6得,CD=5,
由cosC= 得sinC= = ,
所以△ADC的面积S=
= =10.
【解析】(Ⅰ)由二倍角的正弦公式、正弦定理求出cosC,由二倍角的余弦公式变形求出cosB的值;(Ⅱ)由题意求出b的值,由余弦定理列出方程,化简后求出a的值,由条件求出CD的值,由cosC和平方关系求出sinC,代入三角形的面积公式求出△ADC的面积.
【考点精析】解答此题的关键在于理解余弦定理的定义的相关知识,掌握余弦定理:;;.
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn , 数列{bn}是等比数列,且满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3 , 数列{ }的前n项和Tn , 若Tn<M对一切正整数n都成立,则M的最小值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)过点M(2,1),且离心率为 . (Ⅰ)求椭圆C的方程;
(Ⅱ)设A(0,﹣1),直线l与椭圆C交于P,Q两点,且|AP|=|AQ|,当△OPQ(O为坐标原点)的面积S最大时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=sinωx(ω>0)的图象向左平移 个单位得到函数g(x)的图象,若函数g(x)的图象关于直线x=ω对称且在区间(﹣ω,ω)内单调递增,则ω的值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)为奇函数,且在(﹣∞,0)内是减函数,f(﹣2)=0,则xf(x)<0的解集为( )
A.(﹣1,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com