精英家教网 > 高中数学 > 题目详情
已知动点P到定直线l:x=2
2
的距离与点P到定点F(
2
,0)
之比为
2

(1)求动点P的轨迹c的方程;
(2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB交(1)中轨迹C于点A、B,且直线AN、BN的斜率都存在,分别为k1、k2,问k1•k2是否为定值?
(3)若点M为圆O:x2+y2=4上任意一点(不在x轴上),过M作圆O的切线,交直线l于点Q,问MF与OQ是否始终保持垂直关系?
分析:(1)设出点P,利用两点间的距离公式分别表示出P到定直线的距离和到点F的距离的比,建立方程求得x和y的关系式,即P的轨迹方程.
(2)设出N,A,则B的坐标可知,代入圆锥曲线的方程相减后,可求得k1•k2=-
1
2
,证明原式.
(3)设M(x0,y0),则可表示出切线方程,与x=2
2
联立求得Q的坐标表达式,则可分别表示出
OQ
FM
,进而利用向量的运算法则求得
OQ
FM
结果为0,判断出
OQ
FM
解答:解:(1)设点P(x,y),依题意,有
(x-
2
)2+y2
|x-2
2
|
=
2
2

整理,得
x2
4
+
y2
2
=1

所以动点P的轨迹C的方程为
x2
4
+
y2
2
=1


(2)由题意:设N(x1,y1),A(x2,y2),
则B(-x2,-y2
x12
4
+
y12
2
=1
x22
4
+
y22
2
=1

k1•k2=
y1-y2
x1-x2
y1+y2
x1+x2
=
y12-y22
x12-x22

=
2-
1
2
x12-2+
1
2
x22
x12-x22
=-
1
2
为定值.

(3)M(x0,y0),则切线MQ的方程为:xx0+yy0=4
xx0+yy0=4
x=2
2
得Q(2
2
4-2
2
x0
y0
)

FM
=(x0-
2
y0)
OQ
=(2
2
4-2
2
x0
y0
)
FM
OQ

=2
2
x0-4+y0
4-2
2
x0
y0
=0

所以:
FM
OQ
即MF与OQ始终保持垂直关系
点评:本题主要考查了直线与圆锥曲线的关系.当涉及直线的斜率的时候,点差法是常用的方法,能把直线的斜率和曲线方程,交点坐标,交点的中点坐标等向联系.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知动点P到定直线l:x=2
2
的距离与点P到定点F(
2
,0)
之比为
2

(1)求动点P的轨迹c的方程;
(2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB交(1)中轨迹C于点A、B,且直线AN、BN的斜率都存在,分别为k1、k2,问k1•k2是否为定值?
(3)若点M为圆O:x2+y2=4上任意一点(不在x轴上),过M作圆O的切线,交直线l于点Q,问MF与OQ是否始终保持垂直关系?

查看答案和解析>>

科目:高中数学 来源:2010-2011学年度江苏省连云港市赣榆高级中学高三暑期检测数学试卷(解析版) 题型:解答题

已知动点P到定直线l:x=2的距离与点P到定点F之比为
(1)求动点P的轨迹c的方程;
(2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB交(1)中轨迹C于点A、B,且直线AN、BN的斜率都存在,分别为k1、k2,问k1•k2是否为定值?
(3)若点M为圆O:x2+y2=4上任意一点(不在x轴上),过M作圆O的切线,交直线l于点Q,问MF与OQ是否始终保持垂直关系?

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高考数学模拟试卷(解析版) 题型:解答题

已知动点P到定直线l:x=2的距离与点P到定点F之比为
(1)求动点P的轨迹c的方程;
(2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB交(1)中轨迹C于点A、B,且直线AN、BN的斜率都存在,分别为k1、k2,问k1•k2是否为定值?
(3)若点M为圆O:x2+y2=4上任意一点(不在x轴上),过M作圆O的切线,交直线l于点Q,问MF与OQ是否始终保持垂直关系?

查看答案和解析>>

科目:高中数学 来源:2011年江苏省无锡市锡山区羊尖高级中学高考数学模拟试卷(数学)(解析版) 题型:解答题

已知动点P到定直线l:x=2的距离与点P到定点F之比为
(1)求动点P的轨迹c的方程;
(2)若点N为轨迹C上任意一点(不在x轴上),过原点O作直线AB交(1)中轨迹C于点A、B,且直线AN、BN的斜率都存在,分别为k1、k2,问k1•k2是否为定值?
(3)若点M为圆O:x2+y2=4上任意一点(不在x轴上),过M作圆O的切线,交直线l于点Q,问MF与OQ是否始终保持垂直关系?

查看答案和解析>>

同步练习册答案