精英家教网 > 高中数学 > 题目详情
5.已知椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的两个焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,直线$y=\sqrt{2}$过椭圆的焦点,点P是椭圆上位于第一象限的点,并满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=1$,过P作倾斜角互补的两条直线PA,PB分别交椭圆于A,B两点.
(1)求椭圆方程和点P坐标;
(2)求证直线AB的倾斜角为定值.

分析 (1)通过直线$y=\sqrt{2}$过椭圆的焦点可知c=$\sqrt{2}$,结合e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$计算可知a=2、b2=a2-c2=2,进而可得椭圆方程,通过设点P(x,2$\sqrt{1-\frac{{x}^{2}}{2}}$),利用$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=1$计算即得结论;
(2)通过(1)可知P(1,$\sqrt{2}$),通过设直线PA的方程为x=m(y-$\sqrt{2}$)+1、则直线PB的方程为x=-m(y-$\sqrt{2}$)+1,并分别与椭圆方程联立计算可知点A、B的坐标,进而计算可得结论.

解答 (1)解:∵直线$y=\sqrt{2}$过椭圆的焦点,
∴焦点坐标为F1(0,$\sqrt{2}$),
∴c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{2}$,
又∵e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
∴a=2,b2=a2-c2=4-2=2,
∴椭圆方程为:$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{2}=1$,
依题意,设点P(x,2$\sqrt{1-\frac{{x}^{2}}{2}}$),
∵$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=1$,
∴(x,2$\sqrt{1-\frac{{x}^{2}}{2}}$-$\sqrt{2}$)•(x,2$\sqrt{1-\frac{{x}^{2}}{2}}$+$\sqrt{2}$)=1,
整理得:x2=1,
∴P(1,$\sqrt{2}$);
(2)证明:由(1)可知P(1,$\sqrt{2}$),
依题意设直线PA的方程为:x=m(y-$\sqrt{2}$)+1,
则直线PB的方程为:x=-m(y-$\sqrt{2}$)+1,
联立$\left\{\begin{array}{l}{x=m(y-\sqrt{2})+1}\\{2{x}^{2}+{y}^{2}-4=0}\end{array}\right.$,消去x整理得:
(1+2m2)y2+4m$(1-\sqrt{2}m)$y+4m2-$4\sqrt{2}m$-2=0,
∵yA+$\sqrt{2}$=$\frac{4m(\sqrt{2}m-1)}{1+2{m}^{2}}$,
∴yA=$\frac{4m(\sqrt{2}m-1)}{1+2{m}^{2}}$-$\sqrt{2}$,
∴xA=m[$\frac{4m(\sqrt{2}m-1)}{1+2{m}^{2}}$-2$\sqrt{2}$]+1,
联立$\left\{\begin{array}{l}{x=-m(y-\sqrt{2})+1}\\{2{x}^{2}+{y}^{2}-4=0}\end{array}\right.$,消去x整理得:
(1+2m2)y2-4m$(1+\sqrt{2}m)$y+4m2+$4\sqrt{2}m$-2=0,
∵yB+$\sqrt{2}$=$\frac{4m(1+\sqrt{2}m)}{1+2{m}^{2}}$,
∴yB=$\frac{4m(1+\sqrt{2}m)}{1+2{m}^{2}}$-$\sqrt{2}$,
∴xB=-m[$\frac{4m(1+\sqrt{2}m)}{1+2{m}^{2}}$-2$\sqrt{2}$]+1,
∴kAB=$\frac{{y}_{A}-{y}_{B}}{{x}_{A}-{x}_{B}}$=$\frac{\sqrt{2}}{2}$,
∴直线AB的倾斜角为定值.

点评 本题是一道直线与圆锥曲线的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知2sinα+cosα=0,则2cos2α-sin2α的值为(  )
A.$\frac{12}{5}$B.$\frac{5}{12}$C.$\frac{6}{5}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若xlog23=1,则3x+9x的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:?x∈R,x2+mx+1≥0,命题q:双曲线$\frac{x^2}{2}-\frac{y^2}{m}$=1(m>0)的离心率$e∈(\frac{{\sqrt{5}}}{2},+∞)$.
(Ⅰ)写出命题p的命题否定?p;并求出m的取值范围,使得命题?p为真命题;
(Ⅱ)如果“p∨q”为真命题,“p∧q”为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:函数$f(x)={x^3}+a{x^2}+(a+\frac{4}{3})x+6$在(-∞,+∞)上有极值;命题q:关于x的方程x2-3ax+2a2+1=0的两个相异实根均大于3.若p∨q是真命题,p∧q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设等比数列{an}的前n项和为Sn,若a2011=3S2010+2012,a2010=3S2009+2012,则公比q=(  )
A.4B.1或4C.2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在区间[0,2]上随机地取一个数x,则事件“-1≤log${\;}_{\frac{1}{2}}$(x+$\frac{1}{2}$)≤1发生的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求直线B1C1与平面A1BC1所成角的正弦值;
(2)在线段BC1上确定一点D,使得AD⊥A1B,并求$\frac{BD}{B{C}_{1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.奇函数f(x)(x∈R)满足f(-4)=f(1)=0,且在区间(0,2]与[2,+∞)上分别是增函数和减函数,则满足x3•f(x)>0的x的取值范围是(  )
A.(-4,-1)∪(1,4)B.(-∞,4)∪(-1,0)C.(-∞,-4)∪(4,+∞)D.(-∞,-4)∪(-1,0)∪(1,4)

查看答案和解析>>

同步练习册答案