精英家教网 > 高中数学 > 题目详情
12.在区间[-2,3]上任取一个数a,则关于x的方程x2-2ax+a+2=0有根的概率为$\frac{2}{5}$.

分析 求出方程x2-2ax+a+2=0有实根的等价条件.利用几何概型的概率公式即可得到结论

解答 解:若方程x2-2ax+a+2=0有实根,
则判别式△=4a2-4(a+2)≥0,
即a2-a-2≥0,解得a≥2或a≤-1,
∵-2≤a≤3,
∴-2≤a≤-1或,2≤a≤3,
则方程x2-2ax+a+2有实根的概率P=$\frac{-1(-2)+3-2}{3-(-2)}$=$\frac{2}{5}$.
故答案为:$\frac{2}{5}$

点评 本题主要考查几何概型的概率的计算,求出方程有根的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,正方体ABCD-A1B1C1D1中,则直线D1C与平面ABC所成角的大小等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={1,2},B={x|x2+ax+b=0},C={x|cx+1=0},若A=B,则a+b=-1,若C⊆A,则常数c组成的集合为{-1,$\frac{1}{2}$,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l:y=2x+1及曲线C:y=x2-2x+sinθ.
①求证:直线l与曲线C有两个不同的交点;
②求线段AB的中点P的坐标;
③求弦长|AB|的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.方程2x2+2x-1=0的两根为x1和x2,则|x1-x2|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图的程序框图,如果输入的t=0.1,则输出的n=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,且经过点(0,1).
(1)求椭圆C的标准方程;  
(2)过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M,试判断直线BM与直线DE的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|-2≤x≤2},N={x|x-1>0},则M∩N=(  )
A.{x|1<x≤2}B.{x|-2≤x<1}C.{x|1≤x≤2}D.{x|x≥-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{c^2}{{{x^2}+ax+a}}$,其中a为实数.
(Ⅰ)若f(x)的定义域为R,求a的取值范围;
(Ⅱ)当f(x)的定义域为R时,求f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案