精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,PA⊥底面ABCDBCADABBCMPD的中点.

1)求证:CM∥平面PAB

2)求二面角的余弦值.

【答案】1)证明见解析(2

【解析】

1)取的中点,可证得四边形为平行四边形,从而得到,由线面平行判定定理可证得结论;

2)根据垂直关系可以为坐标原点建立空间直角坐标系,根据二面角的向量求法可求得结果.

1)如图,取的中点,连接.

分别为的中点,

四边形为平行四边形,

,又平面平面平面.

2)由题意知:两两垂直,以为坐标原点,所在的直线分别为轴、轴、轴建立如图所示的空间直角坐标系:

设平面的法向量

,令,则.

平面为平面的一个法向量,

二面角为锐二面角,二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若关于的不等式恒成立,求的取值范围;

2)当时,求证:

3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

是否需要志愿 性别

需要

40

30

不需要

160

270

1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.

P

0.0

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某单位甲、乙、丙三个部门的员工人数分别为241616.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.

1)应从甲、乙、丙三个部门的员工中分别抽取多少人?

2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠充足的员工人数,求随机变量X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的单调减区间;

2)若函数在区间上的极大值为8,求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为(t为参数,0).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(Ⅰ)写出曲线C的直角坐标方程;

(Ⅱ)若直线l与曲线C交于A,B两点,且AB的长度为2,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在统计学中,四分位数是指把一组数由小到大排列并分成四等份,处于三个分割点位置的数值为,其中是这组数的中位数,分别可看作这组数被分成的前后两组数的中位数.利用四分位数可以绘制统计学中的箱形图:先找出一组数的最大值、最小值和三个四分位数;然后连接画出“箱子”,中位数在“箱子”中间;再将最大值和最小值与箱子相连接(如图①).某老师绘制了一次数学小测验中甲、乙、丙三个班级学生得分的箱形图(如图②),根据该图判断下列说法错误的是(

A.三个班级中,甲班分数的方差最小

B.三个班级中,乙班分数的极差最大

C.丙班得分低于80的学生人数多于得分高于80的学生人数

D.若每班有42个学生,则三个班级的第11名中,丙班的分数最高

查看答案和解析>>

同步练习册答案