【题目】己知f(x)=x2﹣2x+2,在[ ,m2﹣m+2]上任取三个数a,b,c,均存在以 f(a),f(b),f(c)为三边的三角形,则m的取值范围为( )
A.(0,1)
B.[0, )
C.(0, ]
D.[ , ]
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,侧面ABB1A1为菱形,∠DAB=∠DAA1 .
(Ⅰ)求证:A1B⊥BC;
(Ⅱ)若AD=AB=3BC,∠A1AB=60°,点D在平面ABB1A1上的射影恰为线段A1B的中点,求平面DCC1D1与平面ABB1A1所成锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为、, 为椭圆的右顶点, , 分别为椭圆的上、下顶点.线段的延长线与线段交于点,与椭圆交于点.(1)若椭圆的离心率为, 的面积为12,求椭圆的方程;(2)设 ,求实数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某中学联盟举行了一次“盟校质量调研考试”活动,为了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为分,得分取正整数,抽取学生的分数均在之内)作为样本(样本容量为)进行统计,按照的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在的数据)
(Ⅰ)求样本容量和频率分布直方图中的的值;
(Ⅱ)在选取的样本中,从成绩在分以上(含分)的学生中随机抽取名学生参加“省级学科基础知识竞赛”,求所抽取的名学生中恰有一人得分在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某河道中过度滋长一种藻类,环保部门决定投入生物净化剂净化水体. 因技术原因,第t分钟内投放净化剂的路径长度 (单位:m),净化剂净化水体的宽度 (单位:m)是时间t(单位:分钟)的函数: (由单位时间投放的净化剂数量确定,设为常数,且).
(1)试写出投放净化剂的第t分钟内净化水体面积的表达式;
(2)求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.
(Ⅰ)根据直方图估计这个开学季内市场需求量的平均数和众数;
(Ⅱ)将表示为的函数;
(Ⅲ)根据频率分布直方图估计利润不少于1350元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数).在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴非负半轴为极轴)中,直线的方程为.
(1)求曲线的普通方程及直线的直角坐标方程;
(2)设是曲线上的任意一点,求点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)求函数 的定义域;
(2)若存在a∈R,对任意 ,总存在唯一x0∈[﹣1,2],使得f(x1)=g(x0)成立.求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且a≠1,函数f(x)=loga(x+1), ,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)﹣2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com