精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,若a3+a8=24,则S10的值为(  )
A、20B、60C、90D、120
考点:等差数列的性质
专题:等差数列与等比数列
分析:由等差数列的性质结合已知求得a1+a10,然后直接代入等差数列的前n项和求得答案.
解答: 解:在等差数列{an}中,
∵a3+a8=24,
∴a1+a10=a3+a8=24,
S10=
(a1+a10)×10
2
=
24
2
×10=120

故选:D.
点评:本题考查了等差数列的性质,考查了等差数列的前n项和,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U=R,集合A={(x,y)|y=
x2-x
},B={x|0<x≤1},则(∁UA)∪B=(  )
A、(0,1)
B、(0,1]
C、(-∞,0)∪(1,+∞)
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

x为实数,[x]表示不超过x的最大整数(如[-1.5]=-2,[0]=0,[2.3]=2),则关于函数f(x)=x-[x],x∈R的说法不正确的是(  )
A、函数不具有奇偶性
B、x∈[1,2)时函数是增函数
C、函数是周期函数
D、若函数g(x)=f(x)-kx恰有两个零点,则k∈(-∞,-1)∪(
1
3
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足
y≤x+1
x+2y-5≥0
x2-6x+8≤0
,则3x+y的最大值为(  )
A、
15
2
B、3+
2
21
7
C、
75
8
-
5
33
8
D、17

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(-
π
2
π
2
),则函数y=tan(x+kπ),k∈Z与函数y=sinx的交点个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

圆的标准方程为:(x-a-1)2+(y-b+2)2=r2其圆心坐标是(  )
A、(1,-2)
B、(-2,1)
C、(a+1,b-2)
D、(-a-1,-b+2)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=8a1,则公比q的值为(  )
A、2B、3C、4D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax2+bx(其中a,b为常数且a≠0)在x=1处取得极值.
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若f(x)在闭区间[1,e](其中e为自然对数的底数)上的最大值为1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a≠0,函数f(x)=ax(x-2)2(x∈R)有极大值32,求a的值.

查看答案和解析>>

同步练习册答案