精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为菱形,为线段的中点,为线段上的一点.

(1)证明:平面平面.

(2)若,二面角的余弦值为,求与平面所成角的正弦值.

【答案】(1)见解析;(2)

【解析】

1)由平面PAE,进而可得证;

2)先证得平面,设,以为坐标原点,的方向为轴正方向,建立空间直角坐标系,分别计算平面的法向量为,设与平面所成角为,则,代入计算即可得解.

(1)证明:连接,因为为线段的中点,

所以.

,所以为等边三角形,.

因为,所以平面

平面,所以平面平面.

(2)解:设,则,因为,所以

同理可证,所以平面.

如图,设,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.

易知为二面角的平面角,所以,从而.

,得.

又由,知.

设平面的法向量为

,得,不妨设,得.

,所以.

与平面所成角为,则.

所以与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆O;x2+y2=4,F1(-1,0),F2(1,0),点D圆O上一动点,2=,点C在直线EF1上,且=0,记点C的轨迹为曲线W.

(1)求曲线W的方程;

(2)已知N(4,0),过点N作直线l与曲线W交于A,B不同两点,线段AB的中垂线为l',线段AB的中点为Q点,记P与y轴的交点为M,求|MQ|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应党中央号召,学校以“我们都是追梦人”为主题举行知识竞赛。现有10道题,其中6道甲类题,4道乙类题,王同学从中任取3道题解答.

(Ⅰ)求王同学至少取到2道乙类题的概率;

(Ⅱ)如果王同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立,已知王同学恰好选中2道甲类题,1道乙类题,用表示王同学答对题的个数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在直角梯形中,的中点,四边形为正方形,将沿折起,使点到达点,如图(2),的中点,且,点为线段上的一点.

1)证明:

2)当夹角最小时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球的半径为4,球面被互相垂直的两个平面所截,得到的两个圆的公共弦长为2.若球心到这两个平面的距离相等,则这两个圆的半径之和为(  )

A. 4B. 6C. 8D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

1)求方程的实数根;

2)设均为正整数,且为最简根式,若存在,使得可唯一表示为的形式,试求椭圆的焦点坐标;

3)已知,是否存在,使得成立,若存在,试求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列条件:①焦点在轴上;②焦点在轴上;③抛物线上横坐标为的点到其焦点的距离等于;④抛物线的准线方程是.

1)对于顶点在原点的抛物线:从以上四个条件中选出两个适当的条件,使得抛物线的方程是,并说明理由;

2)过点的任意一条直线交于不同两点,试探究是否总有?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

(Ⅰ)当为偶函数时,求函数的极值;

(Ⅱ)若函数在区间上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数e为自然对数的底数).

1)若,求的最大值;

2)若R上单调递减,

①求a的取值范围;

②当时,证明:.

查看答案和解析>>

同步练习册答案