精英家教网 > 高中数学 > 题目详情

【题目】如图,抛物线的焦点为F10),E是抛物线的准线与x轴的交点,直线AB经过焦点F且与抛物线交于AB两点,直线AEBE分别交y轴于MN两点,记的面积分别为

1)求抛物线C的标准方程;

2是否为定值?若是,求出该定值;若不是,请说明理由;

3)求的最小值.

【答案】1;(2)是定值,4;(35.

【解析】

1)由焦点坐标得焦参数后可得抛物线方程;

2)由于直线AB的斜率不可能为0,故可设,代入抛物线方程整理后得一元二次方程,设,则.由计算,并计算可得定值;

(3)在(2)基础上,由点坐标求出点坐标,同理得坐标,得(仍然代入),这样可用表示,换元设),利用函数的单调性可得最小值.

解:(1)∵抛物线的焦点为,∴

∴抛物线方程为

2)由已知可得

由于直线AB的斜率不可能为0,故可设

联立,消去x并整理得:

,则

所以,

所以(定值);

3)直线,可得,同理

由对勾函数的性质知上是增函数,在上是增函数,所以时,,此时

的最小值是5,此时直线轴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E经过点,且离心率.

1)求椭圆E的方程;

2)设椭圆E的右顶点为A,若直线与椭圆E相交于MN两点(异于A点),且满足,试证明直线l经过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且,抛物线的通径与椭圆的右通径在同一直线上.

1)求椭圆与抛物线的标准方程;

2)过抛物线焦点且倾斜角为的直线与椭圆交于两点,为椭圆的左焦点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶某村户贫困户.为了做到精准帮扶,工作组对这户村民的年收入情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标.将指标按照分成五组,得到如图所示的频率分布直方图.规定若,则认定该户为绝对贫困户,否则认定该户为相对贫困户;当时,认定该户为亟待帮住户”.工作组又对这户家庭的受教育水平进行评测,家庭受教育水平记为良好不好两种.

1)完成下面的列联表,并判断是否有的把握认为绝对贫困户数与受教育水平不好有关:

受教育水平良好

受教育水平不好

总计

绝对贫困户

相对贫困户

总计

2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于的贫困户中,随机选取两户,用表示所选两户中亟待帮助户的户数,求的分布列和数学期望.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数abR.

1)若a1,求关于x的不等式的解集;

2)若,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三个校区分别位于扇形OAB的三个顶点上,点Q是弧AB的中点,现欲在线段OQ上找一处开挖工作坑P(不与点O,Q重合),为小区铺设三条地下电缆管线PO,PA,PB,已知OA=2千米,∠AOB=,记∠APQ=θrad,地下电缆管线的总长度为y千米.

(1)将y表示成θ的函数,并写出θ的范围;

(2)请确定工作坑P的位置,使地下电缆管线的总长度最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线 ,直线与抛物线相交于两点,且当倾斜角为的直线经过抛物线的焦点时,有.

(1)求抛物线的方程;

(2)已知圆,是否存在倾斜角不为的直线,使得线段被圆截成三等分?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在1565岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

年龄

支持“延迟退休”的人数

15

5

15

28

17

(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;

45岁以下

45岁以上

总计

支持

不支持

总计

(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人

①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.

②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为  

A. B. C. D.

查看答案和解析>>

同步练习册答案